Skip to main content
Log in

Efficient real-time trajectory tracking

  • Special Issue Paper
  • Published:
The VLDB Journal Aims and scope Submit manuscript

Abstract

Moving objects databases (MOD) manage trajectory information of vehicles, animals, and other mobile objects. A crucial problem is how to efficiently track an object’s trajectory in real-time, in particular if the trajectory data is sensed at the mobile object and thus has to be communicated over a wireless network. We propose a family of tracking protocols that allow trading the communication cost and the amount of trajectory data stored at a MOD off against the spatial accuracy. With each of these protocols, the MOD manages a simplified trajectory that does not deviate by more than a certain accuracy bound from the actual movement. Moreover, the different protocols enable several trade-offs between computational costs, communication cost, and the reduction in the trajectory data: Connection-Preserving Dead Reckoning minimizes the communication cost using dead reckoning, a technique originally designed for tracking an object’s current position. Generic Remote Trajectory Simplification (GRTS) further separates between tracking of the current position and simplification of the past trajectory and can be realized with different line simplification algorithms. For both protocols, we discuss how to bound the space consumption and computing time at the moving object and thereby present an effective compression technique to optimize the reduction performance of real-time line simplification in general. Our evaluations with hundreds of real GPS traces show that a realization of GRTS with a simple simplification heuristic reaches 85–90% of the best possible reduction rate, given by retrospective offline simplification. A realization with the optimal line simplification algorithm by Imai and Iri even reaches more than 97% of the best possible reduction rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abam, M.A., de Berg, M., Hachenberger, P., Zarei, A.: Streaming algorithms for line simplification. In: Proceedings of the 23rd Symposium on Computational Geometry (SCG), pp. 175–183. Gyeongju, South Korea (2007)

  2. Agarwal P.K., Har-Peled S., Mustafa N.H., Wang Y.: Near-linear time approximation algorithms for curve simplification. Algorithmica 42(3–4), 203–219 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Agarwal P.K., Varadarajan K.R.: Efficient algorithms for approximating polygonal chains. Discret. Comput. Geom. 23(2), 273–291 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao H., Wolfson O., Trajcevski G.: Spatio-temporal data reduction with deterministic error bounds. VLDB J. 15(3), 211–228 (2006)

    Article  Google Scholar 

  5. Chan, W.S., Chin, F.: Approximation of polygonal curves with minimum number of line segments. In: Proceedings of the 3rd International Symposium on Algorithms and Computation (ISAAC), pp. 378–387. Nagoya, Japan (1992)

  6. Douglas D.H., Peucker T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Can. Cartog. 10(2), 112–122 (1973)

    Google Scholar 

  7. Gudmundsson, J., Katajainen, J., Merrick, D., Ong, C., Wolle, T.: Compressing spatio-temporal trajectories. In: Proceedings of the 18th International Symposium on Algorithms and Computation (ISAAC), pp. 763–775. Sendai, Japan (2007)

  8. Güting R.H., Schneider M.: Moving Objects Databases. Morgan Kaufmann, San Francisco, CA (2005)

    Google Scholar 

  9. Hershberger, J., Snoeyink, J.: An O(n log n) implementation of the Douglas–Peucker algorithm for line simplification. In: Proceedings of the 10th Symposium on Computational Geometry, pp. 383–384. Stony Brook, NY (1994)

  10. Hönle, N., Großmann, M., Nicklas, D., Mitschang, B.: Preprocessing position data of mobile objects. In: Proceedings of the 9th International Conference on Mobile Data Management (MDM), pp. 41–48. Beijing, China (2008)

  11. Imai, H., Iri, M.: Computational Morphology, chapter Polygonal Approximations of a Curve—Formulations and Algorithms, pp. 71–86. North-Holland Publishing Company, Netherlands (1988)

  12. Lange, R., Dürr, F., Rothermel, K.: Online trajectory data reduction using connection-preserving dead reckoning. In: Proceedings of the 5th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (MobiQuitous). Dublin, Ireland. http://www.mobiquitous.org (2008a)

  13. Lange, R., Dürr, F., Rothermel, K.: Scalable processing of trajectory-based queries in space-partitioned moving objects databases. In: Proceedings of the 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM GIS), pp. 270–279. Irvine, CA (2008b)

  14. Lange, R., Dürr, F., Rothermel, K.: Efficient tracking of moving objects using generic remote trajectory simplification (Demo Paper). In: Proceedings of the 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). Mannheim, Germany (2010)

  15. Lange, R., Farrell, T., Dürr, F., Rothermel, K.: Remote real-time trajectory simplification. In: Proceedings of the 7th IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 184–193. Galveston, TX (2009)

  16. Lema J.A.C., Forlizzi L., Güting R.H., Nardelli E., Schneider M.: Algorithms for moving objects databases. Comput. J. 46(6), 680–712 (2003)

    Article  MATH  Google Scholar 

  17. Leonhardi A., Rothermel K.: A comparison of protocols for updating location information. Clust. Comput. J. Netw. Softw. Tools Appl. 4(4), 355–367 (2001)

    Google Scholar 

  18. Meratnia, N., de By, R.A.: Spatiotemporal compression techniques for moving point objects. In: Proceedings of the 9th International Conference on Extending Database Technology (EDBT), pp. 765–782. Heraklion, Crete (2004)

  19. Misra, P., Enge, P.: Global Positioning System: Signals, Measurements and Performance. Ganga-Jumuna Press, Lincoln, MA (2001)

  20. Mokbel M.F., Ghanem T.M., Aref W.G.: Spatio-temporal access methods. IEEE Data Eng. Bull. 26(2), 40–49 (2003)

    Google Scholar 

  21. OpenStreetMap. http://www.openstreetmap.org/

  22. Pfoser, D., Jensen, C.S.: Capturing the uncertainty of moving-object representations. In: Proceedings of the 6th International Symposium on Advances in Spatial Databases (SSD), pp. 111–131. Hong Kong, China (1999)

  23. Potamias, M., Patroumpas, K., Sellis, T.: Amnesic online synopses for moving objects. In: Proceedings of the 15th ACM International Conference on Information and Knowledge Management (CIKM), pp. 784–785. Arlington, VA (2006a)

  24. Potamias, M., Patroumpas, K., Sellis, T.: Sampling trajectory streams with spatiotemporal criteria. In: Proceedings of the 18th International Conference on Scientific and Statistical Database Management (SSDBM), pp. 275–284. Vienna, Austria (2006b)

  25. Rankin, J.: GPS and differential GPS: an error model for sensor simulation. In: Position Location and Navigation Symposium, pp. 260–266 (1994)

  26. Tiešyt e, D., Jensen, C.S.: Recovery of vehicle trajectories from tracking data for analysis purposes. In: Proceedings of the 6th European Congress and Exhibition on Intelligent Transport Systems and Services. Aalborg, Denmark (2007)

  27. Trajcevski, G., Cao, H., Scheuermann, P., Wolfson, O., Vaccaro, D.: Online data reduction and the quality of history in moving objects databases. In: Proceedings of the 5th ACM International Workshop on Data Engineering for Wireless and Mobile Access (MobiDE), Chicago, IL (2006)

  28. US Dept. of Defense. Global Positioning System Standard Positioning Service Performance Standard (2001)

  29. Varadarajan, K.R.: Approximating monotone polygonal curves using the uniform metric. In: Proceedings of the 12th Symposium on Computational Geometry, pp. 311–318. Philadelphia, PA (1996)

  30. Čivilis A., Jensen C.S., Pakalnis S.: Techniques for efficient road-network-based tracking of moving objects. IEEE Trans. Knowl. Data Eng. (TKDE) 17(5), 698–712 (2005)

    Article  Google Scholar 

  31. Wolfson O., Sistla A.P., Chamberlain S., Yesha Y.: Updating and querying databases that track mobile units. Distrib. Parallel Databases 7(3), 257–287 (1999)

    Article  Google Scholar 

  32. Zogg, J.-M.: Essentials of Satellite Navigation (Compendium). http://www.u-blox.com/ (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Lange.

Additional information

Parts of this article appeared as “Online Trajectory Data Reduction using Connection-Preserving Dead Reckoning” in the Proceedings of the 5th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (MobiQuitous ’08) [12] and as “Remote Real-Time Trajectory Simplification” in the Proceedings of the 7th IEEE International Conference on Pervasive Computing and Communications (PerCom ’09) [15].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lange, R., Dürr, F. & Rothermel, K. Efficient real-time trajectory tracking. The VLDB Journal 20, 671–694 (2011). https://doi.org/10.1007/s00778-011-0237-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00778-011-0237-7

Keywords

Navigation