Skip to main content
Log in

Spatio-temporal data reduction with deterministic error bounds

  • Regular Paper
  • Published:
The VLDB Journal Aims and scope Submit manuscript

Abstract

A common way of storing spatio-temporal information about mobile devices is in the form of a 3D (2D geography + time) trajectory. We argue that when cellular phones and Personal Digital Assistants become location-aware, the size of the spatio-temporal information generated may prohibit efficient processing. We propose to adopt a technique studied in computer graphics, namely line-simplification, as an approximation technique to solve this problem. Line simplification will reduce the size of the trajectories. Line simplification uses a distance function in producing the trajectory approximation. We postulate the desiderata for such a distance-function: it should be sound, namely the error of the answers to spatio-temporal queries must be bounded. We analyze several distance functions, and prove that some are sound in this sense for some types of queries, while others are not. A distance function that is sound for all common spatio-temporal query types is introduced and analyzed. Then we propose an aging mechanism which gradually shrinks the size of the trajectories as time progresses. We also propose to adopt existing linguistic constructs to manage the uncertainty introduced by the trajectory approximation. Finally, we analyze experimentally the effectiveness of line-simplification in reducing the size of a trajectories database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hage, C., Jensen, C.S., Pedersen, T.B., Speicys, L., Timko, I.: Integrated data management for mobile services in the real world. In: Proceedings of the 26th International Conference on Very Large Data Bases, pp. 1019–1030 (2003)

  2. Schiller, J., Voisard, A. (eds.): Location-Based Services. Morgan Kaufmann (2004)

  3. Wolfson, O.: Moving objects information management: The database challenge. In: Proceedings of the 5th Workshop on Next Generation Information Technologies and Systems (NGITS’2002) (2002)

  4. Hightower, J., Borriella, G.: Location systems for ubiquitous computing. IEEE Comput. 34(8), 57–66 (2001)

    Google Scholar 

  5. Snyder, J.P., Tobler, W.R., Yang, O.H., Yang, Q.H.: Map Projection Transformations: Principles and Applications. CRC, Boca Raton, FL (2000)

  6. Arctur, D., Zeiler, M.: Designing Geodatabases: Case Studies in GIS Data Modeling

  7. Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing information. In: PODS ’98: Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, p. 188 (1998)

  8. Veijalainen, J., Ojanen, E., Haq, M.A., Vahteala, V.-P., Matsumoto, M.: Energy consumption tradeoffs for compressed wireless data at a mobile terminal. IEICE Trans., Spec. Issu. Multimedia Commun. E87-B(5), 1123–1130 (2004)

    Google Scholar 

  9. Agarwal, P.K., Varadarajan, K.R.: Efficient algorithms for approximating polygonal chains. Discrete Comput. Geom. 23, 273–291 (2000)

    Article  MathSciNet  Google Scholar 

  10. Chan, W., Chin, F.: Approximation of polygonal curves with minimum number of line segments or minimum error. Int. J. Comput. Geom. Appl. 6, 50–77 (1996)

    Article  MathSciNet  Google Scholar 

  11. Douglas, D., Peuker, T.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Can. Cartographer 10(2), 112–122 (1973)

    Google Scholar 

  12. Hershberger, J., Snoeyink, J.: Speeding up the Douglas-Peucker line-simplification algorithm. In: The 5th International Symposium on Spatial Data Handling (1992)

  13. Imai, H., Iri, M.: Polygonal approximations of a curve-formulations and algorithms. In: Comput. Morphol., pp. 71–86 (1988)

  14. McMaster, R.: Automated line generalization. Cartographica 24(2), 74–111 (1987)

    MathSciNet  Google Scholar 

  15. Garofalakis, M., Gibbons, P.B.: Wavelet synopses with error guarantees. In: Proceedings of ACM SIGMOD, pp. 476–487 (2002)

  16. Special issue on data reduction techniques. IEEE Data Eng. 20 (1998)

  17. Trajcevski, G., Wolfson, O., Hinrichs, K., Chamberlain, S.: Managing uncertainty in moving objects databases. ACM Trans. Database Syst. (TODS) 29(3), 463–507 (2004)

    Article  Google Scholar 

  18. Greenfeld, J.S.: Matching GPS observations to locations on a digital map. In: The 81th Annual Meeting of the Transportation Research Board. Washington, DC (2002)

  19. White, C.E., Bernstein, D., Kornhauser, A.L.: Some map matching algorithms for personal navigation assistants. Transp. Res. Part C 8, 91–108 (2000)

    Google Scholar 

  20. Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel approaches in query processing for moving object trajectories. In: Proceedings of the 26th International Conference on Very Large Data Bases, pp. 395–406 (2000)

  21. Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multi-dimensional trajectories. In: Proceedings of the 18th International Conference on Data Engineering, pp. 673–684. San Jose, CA (2002)

  22. Alt, H., Guibas, L.J.: Discrete geometric shapes: Matching, interpolation, and approximation A survey. Technical Report B 96-11 (1996)

  23. Weibel, R.: Generalization of spatial data: Principles and selected algorithms. In: van Kreveld, M., Nievergelt, J., Roos, T., Widmayer, P. (eds.) Algorithmic Foundations of Geographic Information Systems. LNCS Springer-Verlag, Berlin Heidelberg New York (1998)

  24. Veltkamp, R.C.: Hierarchical approximation and localization. Vis. Comput. 14(10), 471–487 (1998)

    Article  Google Scholar 

  25. Hardle, V., Kerkyacharian, G., Picard, D., Tsybakov, A.: Wavelets, Approximation, and Statistical Applications. Springer, Berlin Heidelberg New York (1998)

    Google Scholar 

  26. Hobby, J.D.: Polygonal approximations that minimize the number of inflections. In: Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 93–102 (1993)

  27. Graefe, G., Shapiro, L.D.: Data compression and database performance. In: Proceedings of the ACM/IEEE-CS Symposium on Applied Computing (1991)

  28. Westmann, T., Kossmann, D., Helmer, S., Moerkotte, G.: The implementation and performance of compressed databases. SIGMOD Rec. 29(3), 55–67 (2000)

    Article  Google Scholar 

  29. Chen, Z., Gehrke, J., Korn, F.: Query optimization in compressed database systems. In: Proceedings of ACM SIGMOD International Conference on Management of Data, pp. 271–282. ACM (2001)

  30. Gibbons, P.B., Matias, Y., Poosala, V.: Fast incremental maintenance of approximate histograms. ACM Trans. Database Syst. 27(3), 261–298 (2002)

    Article  Google Scholar 

  31. Chakrabarti, K., Garofalakis, M., Rastogi, R., Shim, K.: Approximate query processing using wavelets. VLDB J. 10(2–3), 199–223 (2001)

    Google Scholar 

  32. Pitoura, E., Samaras, G.: Locating objects in mobile computing. IEEE Trans. Knowledge Data Eng. 13(4), 571–592 (2001)

    Article  Google Scholar 

  33. Florizzi, L., Gutting, R.H., Nardelli, E., Schneider, M.: A data model and data structures for moving objects databases. SIGMOD Rec. 29, 319–330 (2000)

    Article  Google Scholar 

  34. Güting, R.H., B⊙hlen, M.H., Erwig, M., Jensen, C.S., Lorentzos, N., Nardeli, E., Schneider, M., Viqueira, J.R.R.: Spatio-temporal models and languages: An approach based on data types. In: Spatio-Temporal Databases: The Chorochronos Approach (2003)

  35. Lema, J.A.C., Forlizzi, L., Güting, R.H., Nardeli, E., Schneider, M.: Algorithms for moving objects databases. Comput. J. 46(6), 680–712 (2003)

    Article  Google Scholar 

  36. Vazirgiannis, M., Wolfson, O.: A spatio-temporal model and language for moving objects on road networks. In: SSTD ’01: Proceedings of the 7th International Symposium on Advances in Spatial and Temporal Databases, pp. 20–35 (2001)

  37. Agarwal, P.K., Arge, L., Erickson, J.: Indexing moving points. J. Comput. Syst. Sci. 66(1), 207–243 (2003)

    Article  MathSciNet  Google Scholar 

  38. Kollios, D., Gunopulos, D., Tsotras, V.J.: On indexing mobile objects. In: Proceedings of the Eighteenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 261–272 (1999)

  39. Pfoser, D., Jensen, C.: Capturing the uncertainty of moving objects representation. In: Advances in Spatial Databases, 6th International Symposium, SSD’99, pp. 111–132 (1999)

  40. Koubarakis, M., Sellis, T., Frank, A.U., Grumbach, S., Güting, R.H., Jensen, C.S., Lorentzos, N., Manolopoulos, Y., Nardelli, E., Pernici, B., Scheck, H.-J., Scholl, M., Theodoulidis, B., Tryfona, N. (eds.): Spatio-Temporal Databases—The CHOROCHRONOS Approach. Springer-Verlag, Berlin Heidelberg New York (2003)

  41. Ding, Z., Güting, R.H.: Managing moving objects on dynamic transportation networks. In: International Conference on Scientific and Statistical Database Management (SSDB), pp. 287–296 (2004)

  42. Ding, Z., Güting, R.H.: Uncertainty management for networks-constrained moving objects. In: International Conference on Database and Expert Systems Applications (DEXA), pp. 411–421 (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Cao.

Additional information

This research is supported by NSF Grants 0326284, 0330342, ITR-0086144, 0513736, 0209190, and partly supported by the NSF grant IIS-0325144/003 and the Northrop-Grumman Corp. grant PO 8200082518.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, H., Wolfson, O. & Trajcevski, G. Spatio-temporal data reduction with deterministic error bounds. The VLDB Journal 15, 211–228 (2006). https://doi.org/10.1007/s00778-005-0163-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00778-005-0163-7

Keywords

Navigation