Skip to main content
Log in

Oral MSG administration alters hepatic expression of genes for lipid and nitrogen metabolism in suckling piglets

  • Short Communication
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

This experiment was conducted to investigate the effects of oral administration of monosodium glutamate (MSG) on expression of genes for hepatic lipid and nitrogen metabolism in piglets. A total of 24 newborn pigs were assigned randomly into one of four treatments (n = 6/group). The doses of oral MSG administration, given at 8:00 and 18:00 to sow-reared piglets between 0 and 21 days of age, were 0 (control), 0.06 (low dose), 0.5 (intermediate dose), and 1 (high dose) g/kg body weight/day. At the end of the 3-week treatment, serum concentrations of total protein and high-density lipoprotein cholesterol in the intermediate dose group were elevated than those in the control group (P < 0.05). Hepatic mRNA levels for fatty acid synthase, acetyl-coA carboxylase, insulin-like growth factor-1, glutamate–oxaloacetate transaminase, and glutamate–pyruvate transaminase were higher in the middle-dose group (P < 0.05), compared with the control group. MSG administration did not affect hepatic mRNA levels for hormone-sensitive lipase or carnitine palmitoyl transferase-1. We conclude that oral MSG administration alters hepatic expression of certain genes for lipid and nitrogen metabolism in suckling piglets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

ACC:

Acetyl-coA carboxylase

CPT-1:

Carnitine palmitoyl transferase-1

FAS:

Fatty acid synthase

HDL-C:

High-density lipoprotein cholesterol

HSL:

Hormone-sensitive lipase

IGF-1:

Insulin-like growth factor-1

LDL-C:

Low-density lipoprotein cholesterol

MSG:

Monosodium glutamate

References

  • Bertrand J, Goichon A, Déchelotte PM et al (2013) Regulation of intestinal protein metabolism by amino acids. Amino Acids 45:443–450

    Article  CAS  PubMed  Google Scholar 

  • Brosnan JT, Brosnan ME (2013) Glutamate: a truly functional amino acid. Amino Acids 45:413–418

    Article  CAS  PubMed  Google Scholar 

  • Chen LX, Li P, Wang JJ et al (2009) Catabolism of nutritionally essential amino acids in developing porcine enterocytes. Amino Acids 37:143–152

    Article  CAS  PubMed  Google Scholar 

  • Cui W, Taub DD, Gardner K (2007) qPrimerDepot: a primer database for quantitative real time PCR. Nucleic Acids Res 35:D805–D809

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dai ZL, Li XL, Xi PB et al (2013) l-Glutamine regulates amino acid utilization by intestinal bacteria. Amino Acids 45:501–512

    Article  CAS  PubMed  Google Scholar 

  • Deldicque L, Louis M, Theisen D et al (2005) Increased IGF mRNA in human skeletal muscle after creatine supplementation. Med Sci Sports Exerc 37:731–736

    Article  CAS  PubMed  Google Scholar 

  • Dillon EL (2013) Nutritionally essential amino acids and metabolic signaling in aging. Amino Acids 45:431–441

    Article  CAS  PubMed  Google Scholar 

  • Fernstrom JD (2013) Large neutral amino acids: dietary effects on brain neurochemistry and function. Amino Acids 45:419–430

    Article  CAS  PubMed  Google Scholar 

  • Fu WJ, Stromberg AJ, Viele K et al (2010) Statistics and bioinformatics in nutritional sciences: analysis of complex data in the era of systems biology. J Nutr Biochem 21:561–572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fuller SJ, Mynett JR, Sugden PH (1992) Stimulation of cardiac protein synthesis by insulin-like growth factors. Biochem J 282:85–90

    CAS  PubMed  Google Scholar 

  • He LQ, Yang HS, Li TJ et al (2013) Effects of dietary l-lysine intake on the intestinal mucosa and expression of CAT genes in weaned piglets. Amino Acids 45:383–391

    Article  CAS  PubMed  Google Scholar 

  • Hou YQ, Wang L, Yi D et al (2013) N-Acetylcysteine reduces inflammation in the small intestine by regulating redox, EGF and TLR4 signaling. Amino Acids 45:513–522

    Article  CAS  PubMed  Google Scholar 

  • Jobgen WS, Fried SK, Fu WJ et al (2006) Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 17:571–588

    Article  CAS  PubMed  Google Scholar 

  • Kawai M, Sekine-Hayakawa Y, Okiyama A et al (2012) Gustatory sensation of l- and d-amino acids in humans. Amino Acids 43:2349–2358

    Article  CAS  PubMed  Google Scholar 

  • Kondoh T, Torii K (2008) MSG intake suppresses weight gain, fat deposition, and plasma leptin levels in male Sprague–Dawley rats. Physiol Behav 95:135–144

    Article  CAS  PubMed  Google Scholar 

  • Liu XD, Wu X, Yin YL et al (2012) Effects of dietary l-arginineor N-carbamyl-glutamate supplementation during late gestation of sows on the miR-15b/16, miR-221/222, VEGFA and eNOS expression in umbilical vein. Amino Acids 42:2111–2119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakamura H, Kawamata Y, Kuwahara T et al (2013) Long-term ingestion of monosodium l-glutamate did not induce obesity, dyslipidemia or insulin resistance: a two-generation study in mice. J Nutr Sci Vitaminol (Tokyo) 59:129–135

    Article  CAS  Google Scholar 

  • Ren WK, Zou LX, Ruan Z et al (2013) Dietary l-proline supplementation confers immunostimulatory effects on inactivated Pasteurella multocida vaccine immunized mice. Amino Acids 45:555–561

    Article  CAS  PubMed  Google Scholar 

  • Rezaei R, Knabe DA, Tekwe CD et al (2013a) Dietary supplementation with monosodium glutamate is safe and improves growth performance in postweaning pigs. Amino Acids 44:911–923

    Article  CAS  PubMed  Google Scholar 

  • Rezaei R, Wang WW, Wu ZL et al (2013b) Biochemical and physiological bases for utilization of dietary amino acids by young pigs. J Anim Sci Biotech 4:7

    Article  CAS  Google Scholar 

  • Russell-Jones DL, Umpleby AM, Hennessy TR et al (1994) Use of a leucine clamp to demonstrate that IGF-1 actively stimulates protein synthesis in normal humans. Am J Physiol 267:591–598

    Google Scholar 

  • San Gabriel A, Uneyama H (2013) Amino acid sensing in the gastrointestinal tract. Amino Acids 45:451–461

    Article  CAS  PubMed  Google Scholar 

  • Satterfield MC, Dunlap KA, Keisler DH et al (2013) Arginine nutrition and fetal brown adipose tissue development in nutrient-restricted sheep. Amino Acids 45:489–499

    Article  CAS  PubMed  Google Scholar 

  • Smriga M, Torii K (2000) Release of hypothalamic norepinephrine during MSG intake in rats fed normal and nonprotein diet. Physiol Behav 70:413–415

    Article  CAS  PubMed  Google Scholar 

  • Smriga M, Murakami H, Mori M et al (2000) Use of thermal photography to explore the age-dependent effect of monosodium glutamate, NaCl and glucose on brown adipose tissue thermogenesis. Physiol Behav 71:403–407

    Article  CAS  PubMed  Google Scholar 

  • Suryawan A, Nguyen HV, Almonaci RD et al (2013) Abundance of amino acid transporters involved in mTORC1 activation in skeletal muscle of neonatal pigs is developmentally regulated. Amino Acids 45:523–530

    Article  CAS  PubMed  Google Scholar 

  • Tan B, Yin YL, Liu ZQ et al (2009) Dietary l-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids 37:169–175

    Article  CAS  PubMed  Google Scholar 

  • Tan BE, Li XG, Wu G et al (2012) Dynamic changes in blood flow and oxygen consumption in the portal-drained viscera of growing pigs receiving acute administration of l-arginine. Amino Acids 43:2481–2489

    Article  CAS  PubMed  Google Scholar 

  • Torii K, Uneyama H, Nakamura E (2013) Physiological roles of dietary glutamate signaling via gut–brain axis due to efficient digestion and absorption. J Gastroenterol 48:442–451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang WW, Wu ZL, Dai ZL et al (2013) Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids 45:463–477

    Article  PubMed  Google Scholar 

  • Wei JW, Carroll RJ, Harden KK et al (2012) Comparisons of treatment means when factors do not interact in two-factorial studies. Amino Acids 42:2031–2035

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu G (2013a) Functional amino acids in nutrition and health. Amino Acids 45:407–411

    Article  CAS  PubMed  Google Scholar 

  • Wu G (2013b) Amino acids: biochemistry and nutrition. CRC Press, Boca Raton, p 503

    Book  Google Scholar 

  • Wu G, Borbolla AG, Knabe DA (1994a) The uptake of glutamine and release of arginine, citrulline and proline by the small intestine of developing pigs. J Nutr 124:2437–2444

    CAS  PubMed  Google Scholar 

  • Wu G, Knabe DA, Flynn NE (1994b) Synthesis of citrulline from glutamine in pig enterocytes. Biochem J 299:115–121

    CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Burghardt RC et al (2011) Proline and hydroxyproline metabolism: implications for animal and human nutrition. Amino Acids 40:1053–1063

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu X, Zhang Y, Liu Z et al (2012) Effects of oral supplementation with glutamate or combination of glutamate and N-carbamylglutamate on intestinal mucosa in piglets. J Anim Sci 90:337–339

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Wu ZL, Dai ZL et al (2013a) Dietary requirements of “nutritionally nonessential amino acids” by animals and humans. Amino Acids 44:1107–1113

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Shu X, Xie C et al (2013b) The acute and chronic effects of monosodium l-glutamate on serum iron and total iron-binding capacity in the jugular artery and vein of pigs. Biol Trace Elem Res 153:191–195

    Article  Google Scholar 

  • Wu X, Xie C, Yin YL et al (2013c) Effect of l-arginine on HSP70 expression in liver in weanling piglets. BMC Vet Res 9:63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yao K, Yin YL, Chu WY et al (2008) Arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs. J Nutr 138:867–872

    CAS  PubMed  Google Scholar 

  • Yin YL, Yao K, Liu ZJ et al (2010) Supplementing l-leucine to a low-protein diet increases tissue protein synthesis in weanling pigs. Amino Acids 39:1477–1486

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Yin YL, He Q et al (2012) Effects of MSG supplementation on free amino acids in plasma of growing-finishing pigs. J Food Agric Environ 10:600–605

    CAS  Google Scholar 

  • Zhang J, Yin YL, Shu XG et al (2013) Oral administration of MSG increases expression of glutamate receptors and transporters in the gastrointestinal tract of young piglets. Amino Acids 45:1169–1177

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No. 31110103909) and Texas AgriLife Research (H-82000).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulong Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, G., Zhang, J., Zhang, Y. et al. Oral MSG administration alters hepatic expression of genes for lipid and nitrogen metabolism in suckling piglets. Amino Acids 46, 245–250 (2014). https://doi.org/10.1007/s00726-013-1615-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1615-9

Keywords

Navigation