Skip to main content
Log in

Dynamic changes in blood flow and oxygen consumption in the portal-drained viscera of growing pigs receiving acute administration of l-arginine

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

This study tested the hypothesis that an increase in arginine concentration in the portal vein may affect blood flow and oxygen consumption in the portal-drained viscera (PDV) of swine. Eight barrows (70 kg body weight) were surgically fitted with chronic catheters in the portal vein, ileal vein, and carotid artery. Thirteen days after the surgery, pigs that had been fasted for 12 h were randomly allocated to receive administration of either l-alanine (103 mg/kg body weight, isonitrogenous control) or l-arginine–HCl (61 mg/kg body weight) via the portal vein. Portal vein blood flow (PVBF) was measured with infusion of p-aminohippuric acid into the ileal vein, and blood samples were simultaneously obtained every 0.5 h for 4 h. Compared with the control, arginine infusion increased PVBF at 30–90 min after infusion but decreased PDV oxygen consumption at 60–150 min after infusion (P < 0.05). Plasma concentrations of glutamate at infusion times of 180–240 min and of arginine at infusion times of 60–240 min in arginine-infused pigs were higher than those for the control group (P < 0.05). Plasma concentrations of insulin and glucagon at the infusion times of 30–90 min were higher and of free fatty acids at the infusion times of 60–120 min were lower than those for the control pigs (P < 0.05). These results indicate that increasing arginine concentration in the portal vein enhances PDV blood flow, reduces PDV oxygen consumption, and beneficially alters the metabolic profile in swine, an established animal model for studying human nutrition and metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

NO:

Nitric oxide

PAH:

p-Aminohippuric acid

PDV:

Portal-drained viscera

PVBF:

Portal vein blood flow

References

  • Ahren B, Larsson H (1997) Leptin—a regulator of islet function?: its plasma levels correlate with glucagon and insulin secretion in healthy women. Metabolism 46:1477–1481

    Article  PubMed  CAS  Google Scholar 

  • Baraona E, Shoichet L, Navder K et al (2002) Mediation by nitric oxide of the stimulatory effects of ethanol on blood flow. Life Sci 70:2987–2995

    Article  PubMed  CAS  Google Scholar 

  • Bergen WG, Wu G (2009) Intestinal nitrogen recycling and utilization in health and disease. J Nutr 139:821–825

    Article  PubMed  CAS  Google Scholar 

  • Bhanot S, McNeill JH (1996) Insulin and hypertension: a causal relationship? Cardiovasc Res 31:212–221

    PubMed  CAS  Google Scholar 

  • Blachier F, Boutry C, Bos C et al (2009) Metabolism and functions of l-glutamate in the epithelial cells of the small and large intestines. Am J Clin Nutr 90:814S–821S

    Article  PubMed  CAS  Google Scholar 

  • Blachier F, Davila AM, Benamouzig R et al (2011) Channelling of arginine in NO and polyamine pathways in colonocytes and consequences. Front Biosci 16:1331–1343

    Article  PubMed  CAS  Google Scholar 

  • Boden G, Chen X, Mozzoli M et al (1996) Effect of fasting on serum leptin in normal human subjects. J Clin Endocrinol Metab 81:3419–3423

    Article  PubMed  CAS  Google Scholar 

  • Boutry C, Bos C, Matsumoto H et al (2011) Effects of monosodium glutamate supplementation on glutamine metabolism in adult rats. Front Biosci E3:279–290

    Article  CAS  Google Scholar 

  • Burrin DG, Stoll B, van Goudoever JB (2000) Nutrient requirements for intestinal growth and metabolism in the developing pig. In: Lindberg JE, Ogle B et al (eds) Digestive physiology of pig. CAB International, Wallingford, pp 75–78

    Google Scholar 

  • Carlson MG, Snead WL, Campbell PJV (1993) Regulation of free fatty acid metabolism by glucagon. J Clin Endocrinol Metab 77:11–15

    Article  PubMed  CAS  Google Scholar 

  • Copinschi G, Wegienka LC, Hane S et al (1967) Effect of arginine on serum levels of insulin and growth hormone in obese subjects. Metabolism 16:485–491

    Article  PubMed  CAS  Google Scholar 

  • Dallinger S, Sieder A, Strametz J et al (2003) Vasodilator effects of l-arginine are stereospecific and augmented by insulin in humans. Am J Physiol Endocrinol Metab 284:1106–1111

    Google Scholar 

  • Deng D, Yao K, Chu WY et al (2009) Impaired translation initiation activation and reduced protein synthesis in weaned piglets fed a low-protein diet. J Nutr Biochem 20:544–552

    Article  PubMed  CAS  Google Scholar 

  • Dudley MA, Jahoor F, Burrin DG et al (1994) Brush-border disaccharidase synthesis in infant pigs measured in vivo with [2H3] leucine. Am J Physiol 267:G1128–G1134

    PubMed  CAS  Google Scholar 

  • Eaton RP, Schade DS (1974) Effect of clofibrate on arginine-stimulated glucagon and insulin secretion in man. Metabolism 23:445–454

    Article  PubMed  CAS  Google Scholar 

  • Efendic S, Cerasi E, Luft R (1971) Role of glucose in arginine-induced insulin release in man. Metabolism 20:568–579

    Article  PubMed  CAS  Google Scholar 

  • Fasching P, Ratheiser K, Nowotny P et al (1994) Insulin production following intravenous glucose, arginine, and valine: different pattern in patients with impaired glucose tolerance and non- insulin-dependent diabetes mellitus. Metabolism 43:385–389

    Article  PubMed  CAS  Google Scholar 

  • Floyd JC, Fajans SS, Conn JW et al (1966) Stimulation of insulin secretion by amino acids. J Clin Invest 45:1487–1502

    Article  PubMed  CAS  Google Scholar 

  • Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770

    Article  PubMed  CAS  Google Scholar 

  • Fu WJ, Haynes TE, Kohli R et al (2005) Dietary l-arginine supplementation reduces fat mass in Zucker diabetic fatty rats. J Nutr 135:714–721

    PubMed  CAS  Google Scholar 

  • Gannon MC, Nuttall FQ, Lane JT et al (1992) Metabolic response to cottage cheese or egg white protein, with or without glucose in type 2 diabetic subjects. Metabolism 41:1137–1145

    Article  PubMed  CAS  Google Scholar 

  • Garhöfer G, Resch H, Lung S et al (2005) Intravenous administration of l-arginine increases retinal and choroidal blood flow. Am J Ophthalmol 140:69–76

    Article  PubMed  Google Scholar 

  • Harvey RB, Brothers AJ (1962) Renal extraction of para-aminohippurate and creatinine measured by continuous in vivo sampling of arterial and renal-vein blood. Ann N Y Acad Sci 102:46–53

    Article  PubMed  CAS  Google Scholar 

  • He QH, Kong XF, Wu GY et al (2009) Metabolomic analysis of the response of growing pigs to dietary l-arginine supplementation. Amino Acids 37:199–208

    Article  PubMed  CAS  Google Scholar 

  • Huang RL, Yin YL, Li TJ et al (2003) Techniques for implanting a chronic hepatic portal vein transonic flow meter and catheters in the hepatic portal vein, ileal mesenteric vein and carotid artery in swine. Acta Zoonutrimenta Sinica 15:S10–S20

    Google Scholar 

  • Jensen MD, Heiling VJ, Miles JM (1991) Effects of glucagon on free fatty acid metabolism in humans. J Clin Endocrinol Metab 72:308–315

    Article  PubMed  CAS  Google Scholar 

  • Jobgen WS, Fried SK, Fu WJ et al (2006) Regulatory role for the arginine nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 17:571–588

    Article  PubMed  CAS  Google Scholar 

  • Kauter K, Ball M, Kearney P et al (2000) Adrenaline, insulin and glucagon do not have acute effects on plasma leptin levels in sheep: development and characterisation of an ovine leptin ELISA. J Endocrinol 166:127–135

    Article  PubMed  CAS  Google Scholar 

  • Kautzky-Willer A, Ludwig C, Nowotny P et al (1999) Elevation of plasma leptin concentrations in obese hyperinsulinaemic hypothyroidism before and after treatment. Eur J Clin Invest 29:395–403

    Article  PubMed  CAS  Google Scholar 

  • Kim SW, Wu G (2004) Dietary arginine supplementation enhances the growth of milk-fed young pigs. J Nutr 134:625–630

    PubMed  CAS  Google Scholar 

  • Kim SW, Wu G (2009) Regulatory role for amino acids in mammary gland growth and milk synthesis. Amino Acids 37:89–95

    Article  PubMed  CAS  Google Scholar 

  • Kim SW, Mateo RD, Yin YL et al (2007) Functional amino acids and fatty acids for enhancing production performance of sows and piglets. Asian Australas J Anim Sci 20:295–306

    CAS  Google Scholar 

  • Kohli R, Meininger CJ, Haynes TE et al (2004) Dietary l-arginine supplementation enhances endothelial nitric oxide synthesis in streptozotocin-induced diabetic rats. J Nutr 134:600–608

    PubMed  CAS  Google Scholar 

  • Li TJ, Dai QZ, Yin YL et al (2008) Dietary starch sources affect net portal appearance of amino acids and glucose in growing pigs. Animal 2:723–729

    Article  PubMed  CAS  Google Scholar 

  • Maffei M, Halaas J, Ravussin E et al (1995) Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1:1155–1161

    Article  PubMed  CAS  Google Scholar 

  • Marliss EB, Chevalier S, Gougeon R et al (2006) Elevations of plasma methylarginines in obesity and aging are related to insulin sensitivity and rates of protein turnover. Diabetologia 49:351–359

    Article  PubMed  CAS  Google Scholar 

  • Mattson DL, Roman RJ, Cowley AW Jr (1992) Role of nitric oxide in renal papillary blood flow and sodium excretion. Hypertension 19:766–769

    Article  PubMed  CAS  Google Scholar 

  • McKnight JR, Satterfield MC, Jobgen WS et al (2010) Beneficial effects of l-arginine on reducing obesity: potential mechanisms and important implications for human health. Amino Acids 39:349–357

    Article  PubMed  CAS  Google Scholar 

  • Mersmann HJ, Smith SB (2005) Development of white adipose tissue lipid metabolism. In: Burrin DG, Mersmann HJ (eds) Biology of metabolism in growing animals. Elsevier, Oxford, pp 275–302

    Chapter  Google Scholar 

  • Muller WA, Faloona GR, Unger RH (1971) The influence of the antecedent diet upon glucagon and insulin secretion. N Engl J Med 285:1450–1454

    Article  PubMed  CAS  Google Scholar 

  • Newsholme P, Abdulkader F, Rebelato E et al (2011) Amino acids and diabetes: implications for endocrine, metabolic and immune function. Front Biosci 16:315–339

    Article  PubMed  CAS  Google Scholar 

  • Ohta F, Takagi T, Sato H et al (2007) Low-dose l-arginine administration increases microperfusion of hindlimb muscle without affecting blood pressure in rats. Proc Natl Acad Sci USA 104:1407–1411

    Article  PubMed  CAS  Google Scholar 

  • Palmer JP, Walter RM, Ensinck JW (1975) Arginine-stimulated acute phase of insulin and glucagon secretion. I. In normal man. Diabetes 24:735–740

    Article  PubMed  CAS  Google Scholar 

  • Palmer JP, Bensen JW, Walter RM (1976) Arginine-stimulated acute phase of insulin and glucagon secretion in diabetic subjects. J Clin Invest 58:565–570

    Article  PubMed  CAS  Google Scholar 

  • Poeze M, Bruins MJ, Kessels F et al (2011) Effects of l-arginine pretreatment on nitric oxide metabolism and hepatosplanchnic perfusion during porcine endotoxemia. Am J Clin Nutr 93:1237–1247

    Article  PubMed  CAS  Google Scholar 

  • Pratley RE, Nicolson M, Bogardus C et al (1996) Effects of acute hyperinsulinemia on plasma leptin concentrations in insulin-sensitive and insulin-resistant Pima Indians. J Clin Endocrinol Metab 81:4418–4421

    Article  PubMed  CAS  Google Scholar 

  • Saad MF, Khan A, Sharma A et al (1998) Physiological insulinemia acutely modulates plasma leptin. Diabetes 47:544–549

    Article  PubMed  CAS  Google Scholar 

  • Satterfield MC, Dunlap KA, Keisler DH et al (2011) Arginine nutrition and fetal brown adipose tissue development in nutrient-restricted sheep. Amino Acids. doi:10.1007/s00726-011-1168-8

  • Satterfield MC, Dunlap KA, Keisler DH et al (2012) Arginine nutrition and fetal brown adipose tissue development in diet-induced obese sheep. Amino Acids. doi:10.1007/s00726-012-1235-9

  • Segal KR, Landt M, Klein S (1996) Relationship between insulin sensitivity and plasma leptin concentration in lean and obese men. Diabetes 45:988–991

    Article  PubMed  CAS  Google Scholar 

  • Simonsen L, Coker R, Mulla AL et al (2002) The effect of insulin and glucagon on splanchnic oxygen consumption. Liver 22:459–466

    Article  PubMed  CAS  Google Scholar 

  • Smith PA, Sakura H, Coles B et al (1997) Electrogenic arginine transport mediates stimulus-secretion coupling in mouse pancreatic b-cells. J Physiol 499:625–635

    PubMed  CAS  Google Scholar 

  • Stingl H, Raffesberg W, Nowotny P et al (2002) Reduction of plasma leptin concentrations by arginine but not lipid infusion in humans. Obes Res 10:1111–1119

    Article  PubMed  CAS  Google Scholar 

  • Stoll B, Burrin DG (2006) Measuring splanchnic amino acid metabolism in vivo using stable isotopic tracers. J Anim Sci 84:E60–E72

    PubMed  Google Scholar 

  • Stoll B, Burrin DG, Yu H et al (1998) Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets. J Nutr 128:606–614

    PubMed  CAS  Google Scholar 

  • Tan BE, Yin YL, Liu ZQ et al (2009) Dietary l-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids 37:169–175

    Article  PubMed  CAS  Google Scholar 

  • Tan BE, Yin YL, Kong XF et al (2010) l-Arginine stimulates proliferation and prevents endotoxin-induced death of intestinal cells. Amino Acids 38:1227–1235

    Article  PubMed  CAS  Google Scholar 

  • Tan BE, Liu ZQ, Tang WJ et al (2011) Dietary arginine supplementation differentially regulates expression of fat-metabolic genes in porcine adipose tissue and skeletal muscle. J Nutr Biochem 22:441–445

    Article  PubMed  CAS  Google Scholar 

  • Tangphao O, Grossmann M, Chalon S et al (1999) Pharmacokinetics of intravenous and oral l-arginine in normal volunteers. Br J Clin Pharmacol 47:261–266

    Article  PubMed  CAS  Google Scholar 

  • Tay A, Ozçelikay AT, Altan VM (2002) Effects of l-arginine on blood pressure and metabolic changes in fructose-hypertensive rats. Am J Hypertens 15:72–77

    Article  PubMed  CAS  Google Scholar 

  • Witters LA, Trasko CS (1979) Regulation of hepatic free fatty acid metabolism by glucagon and insulin. Am J Physiol 237:G23–G29

    Google Scholar 

  • Wu G (1997) Synthesis of citrulline and arginine from proline in enterocytes of postnatal pigs. Am J Physiol 272:G1382–G1390

    PubMed  CAS  Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Article  PubMed  Google Scholar 

  • Wu G, Meininger CJ (2009) Nitric oxide and vascular insulin resistance. Biofactors 35:21–27

    Article  PubMed  Google Scholar 

  • Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    PubMed  CAS  Google Scholar 

  • Wu G, Knabe DA, Flynn NE (2005) Amino acid metabolism in the small intestine: biochemical bases and nutritional significance. In: Burrin DG, Mersmann HJ (eds) Biology of metabolism of growing animals. Elsevier, New York, pp 107–126

    Chapter  Google Scholar 

  • Wu GY, Bazer FW, Davis TA et al (2007a) Important roles for the arginine family of amino acids in swine nutrition and production. Livest Sci 112:8–22

    Article  Google Scholar 

  • Wu G, Bazer FW, Cudd TA et al (2007b) Pharmacokinetics and safety of arginine supplementation in animals. J Nutr 137:1673S–1680S

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Davis TA et al (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Burghardt RC et al (2011) Proline and hydroxyproline metabolism: implications for animal and human nutrition. Amino Acids 40:1053–1063

    Article  PubMed  CAS  Google Scholar 

  • Yao K, Yin YL, Chu W et al (2008) Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs. J Nutr 138:867–872

    PubMed  CAS  Google Scholar 

  • Yen JT, Killefer J (1987) A method for chronically quantifying net absorption of nutrients and gut metabolites into hepatic portal vein in conscious swine. J Anim Sci 64:923–934

    PubMed  CAS  Google Scholar 

  • Yin YL, Tan BE (2010) Manipulation of dietary nitrogen, amino acids and phosphorus to reduce environmental impact of swine production and enhance animal health. J Food Agric Environ 8:447–462

    CAS  Google Scholar 

  • Yin YL, Zhong HY, Huang RL et al (1993) Nutritive value of feedstuffs and diets for pigs. I. Chemical composition, apparent ileal and fecal digestibility. Anim Feed Sci Technol 44:1–27

    Article  CAS  Google Scholar 

  • Yin YL, McEvoy J, Souffrant WB et al (2000) Apparent digestibility (ileal and overall) of nutrients and endogenous nitrogen losses in growing pigs fed wheat or wheat by-products without or with xylanase supplementation. Livest Prod Sci 62:119–132

    Article  Google Scholar 

  • Yin YL, Huang RL, Li TJ et al (2010) Amino acid metabolism in the portal-drained viscera of young pigs: effects of dietary supplementation with chitosan and pea hull. Amino Acids 39:1581–1587

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was jointly supported by grants from National Basic Research Project (2012CB124704), NSFC (31110103909, 31001016, 30901040, 30928018), Chinese Academy of Sciences and Knowledge Innovation Project (KZCX2-EW-412, Y022042020), Chinese Universities Scientific Funds (2012RC024), the Thousand-People-Talent program at China Agricultural University, and Texas AgriLife Research project (No. 8200).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tiejun Li or Yulong Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, B., Li, X., Wu, G. et al. Dynamic changes in blood flow and oxygen consumption in the portal-drained viscera of growing pigs receiving acute administration of l-arginine. Amino Acids 43, 2481–2489 (2012). https://doi.org/10.1007/s00726-012-1328-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1328-5

Keywords

Navigation