Skip to main content
Log in

Double Electron–Electron Resonance vs. Instantaneous Diffusion Effect on Spin-Echo for Nitroxide Spins Labels

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Double electron–electron resonance (DEER, also known as PELDOR) is an efficient tool to study nanoscale distances between paramagnetic species forming oligomers or arranged in clusters. DEER also may be applied to study heterogeneous systems in which large clusters of spin labels may be considered as randomly distributed species of enhanced local concentration. For these systems, information of the same kind could be obtained with a simple two-pulse Hahn’s spin-echo sequence, if a so-called instantaneous diffusion (ID) effect is separated from other dephasing processes. Comparison of DEER and ID decays performed here at X-band EPR for model systems of nitroxides dissolved in molecular glasses showed good agreement between DEER and ID data, as well as with theory for randomly distributed spins. For spin-labeled stearic acids in a model biological membrane, the obtained DEER and ID data indicate on cluster formation with enhanced local concentration. For high stearic acid concentration, the ID data were found to strongly deviate from the DEER data, which were interpreted as an evidence for correlation of mutual orientations of spin labels in the clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Milov, K. Salikhov, M. Shchirov, Soviet. Phys. Solid State 23, 565–569 (1981)

    Google Scholar 

  2. A.D. Milov, A.B. Ponomarev, Y.D. Tsvetkov, Chem. Phys. Letters 110, 67–72 (1984)

    Article  ADS  Google Scholar 

  3. M. Pannier, S. Veit, A. Godt, G. Jeschke, H.W. Spiess, J. Magn. Reson. 142, 331–340 (2000)

    Article  ADS  Google Scholar 

  4. A. Savitsky, K. Möbius, Photosynth. Res. 102, 311–333 (2009)

    Article  Google Scholar 

  5. J.P. Klare, H.J. Steinhoff, Photosynth. Res. 102, 377–390 (2009)

    Article  Google Scholar 

  6. G.W. Reginsson, O. Schiemann, Biochem. J. 434, 353–363 (2011)

    Article  Google Scholar 

  7. G. Jeschke, Annu. Rev. Phys. Chem. 63, 419–446 (2012)

    Article  ADS  Google Scholar 

  8. T.F. Prisner, A. Marko, S.Th. Sigurdsson, J. Magn. Reson. 252, 187–198 (2015)

  9. A. Kuzhelev, D. Akhmetzyanov, V. Denysenkov, G. Shevelev, O. Krumkacheva, E. Bagryanskaya, T. Prisner, Phys. Chem. Chem. Phys. 20, 26140–26144 (2018)

    Article  Google Scholar 

  10. X. Bogetti, S. Ghosh, A.G. Jarvi, J.M. Wang, S. Saxena, J. Phys. Chem. 124, 2788–2797 (2020)

    Article  Google Scholar 

  11. S. Spicher, D. Abdullin, S. Grimme, O. Schiemann, Phys. Chem. Chem. Phys. 22, 24282–24290 (2020)

    Article  Google Scholar 

  12. R. Klauder, P.W. Anderson, Phys. Rev. 125, 912–932 (1962)

    Article  ADS  Google Scholar 

  13. K.M. Salikhov, S.A. Dzuba, A.M. Raitsimring, J. Magn. Reson. 42, 255–276 (1981)

    ADS  Google Scholar 

  14. A.D. Milov, A.G. Maryasov, Y.D. Tsvetkov, Appl. Magn. Reson. 15, 107–143 (1998)

    Article  Google Scholar 

  15. G. Jeschke, A. Koch, U. Jonas, A. Godt, J. Magn. Reson. 155, 72–82 (2002)

    Article  ADS  Google Scholar 

  16. M.E. Kardash, S.A. Dzuba, J. Phys. Chem. B 121, 5209–5217 (2017)

    Article  Google Scholar 

  17. A. Raitsimring, in Biological Magnetic Resonance, vol. 19, ed. by L.J. Berliner, G.R. Eaton, S.A. Eaton (Kluwer/Plenum Publishers, New York, 2002), pp. 461–491

    Google Scholar 

  18. B. Rakvin, N. Maltar-Strmecki, K. Nakagawa, Radiat. Meas. 42, 1469–1474 (2007)

    Article  Google Scholar 

  19. M. Marrale, A. Longo, M. Brai, A. Barbon, M. Brustolon, P. Fattibene, Rad. Meas. 46, 789–792 (2011)

    Article  Google Scholar 

  20. M. Marrale, A. Longo, A. Barbon, M. Brustolon, M. Brai, Rad. Protect. Dosimetry 161, 398–402 (2014)

    Article  Google Scholar 

  21. Y.-C. Lai, A. Chang, C.-M. Yang, Y.-W. Chiang, Appl. Magn. Reson. 49, 1201–1216 (2018)

    Article  Google Scholar 

  22. S.A. Dzuba, M.N. Uvarov, D.E. Utkin, F. Formaggio, A. Bedon, A. Orlandin, C. Peggion, Appl. Magn. Reson. 48, 943–953 (2017)

    Article  Google Scholar 

  23. M.E. Kardash, S.A. Dzuba, J. Chem. Phys. 141, 211101 (2014)

    Article  ADS  Google Scholar 

  24. E.F. Afanasyeva, V.N. Syryamina, S.A. Dzuba, J. Chem. Phys. 146, 011103 (2017)

    Article  ADS  Google Scholar 

  25. S.A. Dzuba, M.E. Kardash, Biochim. Biophys. Acta Biomembr. 1860, 2527–2531 (2018)

    Article  Google Scholar 

  26. V.N. Syryamina, N.E. Sannikova, M. De Zotti, M. Gobbo, F. Formaggio, S.A. Dzuba, Biochim. Biophys. Acta Biomembr. 1863, 183585 (2021)

    Article  Google Scholar 

  27. I.A. Terracina, M. Todaro, M. Mazaj, S. Agnello, F.M. Gelardi, G. Buscarino, J. Phys. Chem. C 123, 1730–1741 (2019)

    Article  Google Scholar 

  28. A.E. London, H. Chen, M.A. Sabuj, J. Tropp, M. Saghayezhian, N. Eedugurala, B.A. Zhang, Y. Liu, X. Gu, B.M. Wong, N. Rai, M.K. Bowman, J.D. Azoulay, Sci. Adv. 5, 2336 (2019)

    Article  ADS  Google Scholar 

  29. K.M. Salikhov, I.T. Khairuzhdinov, R.B. Zaripov, Appl. Magn. Reson. 45, 573–619 (2014)

    Article  Google Scholar 

  30. C.L. Homrighausen, J.A.K. Bauer, Acta Cryst. C55, 9900102 (1999)

    Google Scholar 

  31. E.G. Rozantsev, Free Nitroxyl Radicals (Plenum Press, New York, 1970)

    Book  Google Scholar 

  32. A.D. Milov, Y.G. Grishin, S.A. Dzuba, Y.D. Tsvetkov, Appl. Magn. Reson. 41, 59–67 (2011)

    Article  Google Scholar 

  33. E.P. Kirilina, S.A. Dzuba, A.G. Maryasov, Y.D. Tsvetkov, Appl. Magn. Reson. 21, 203–221 (2001)

    Article  Google Scholar 

  34. E.A. Golysheva, G.Yu. Shevelev, S.A. Dzuba, J. Chem. Phys. 147, 064501 (2017)

  35. S.A. Dzuba, Y.D. Tsvetkov, Chem. Phys. 120, 291–298 (1988)

    Article  Google Scholar 

  36. S. Funari, F. Barcelo, P.V. Escriba, J. Lipid Res. 44, 567–575 (2003)

    Article  Google Scholar 

  37. O. Schiemann, P. Cekan, D. Margraf, T.F. Prisner, S.T. Sigurdsson, Angew. Chem. Int. Ed. 48, 3292–3295 (2009)

    Article  Google Scholar 

  38. D. Abdullin, G. Hagelueken, R.I. Hunter, G.M. Smith, O. Schiemann, Mol. Phys. 113, 544–560 (2015)

    Article  ADS  Google Scholar 

  39. C. Abe, D. Klose, F. Dietrich, W.H. Ziegler, Y. Polyhach, G. Jeschke, H.J. Steinhoff, J. Magn. Reson. 216, 53–61 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Dr. D. S. Baranov for his assistance in purification of the substances. This work was supported by the Russian Science Foundation, Project # 21-13-00025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei A. Dzuba.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golysheva, E.A., Smorygina, A.S. & Dzuba, S.A. Double Electron–Electron Resonance vs. Instantaneous Diffusion Effect on Spin-Echo for Nitroxide Spins Labels. Appl Magn Reson 53, 685–698 (2022). https://doi.org/10.1007/s00723-021-01389-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-021-01389-0

Navigation