Skip to main content

Part of the book series: Structure and Bonding ((STRUCTURE,volume 152))

Abstract

In recent years electron spin resonance (ESR) has provided the means to obtain structural constraints in the field of structural biology on the nanoscale by measuring distances between paramagnetic species, which usually have been nitroxide spin-labels. These ESR methods enable the measurement of distances over the wide range from ca. 6–10 Å to nearly 90 Å. While cw methods may be used for the shortest distances, it is the pulse methods that enable this wide range, as well as determination of the distributions in distance. In this chapter we first describe the underlying theoretical concepts for understanding the principal pulse methods of double quantum coherence (DQC)-ESR and double-electron–electron-resonance (DEER), which we collectively refer to as Pulse-Dipolar ESR Spectroscopies (PDS). We then provide technical aspects of pulse ESR spectrometers required for high quality PDS studies. This is followed by an extensive description of sensitivity considerations in PDS, based largely upon our highly sensitive 17.3 GHz pulse spectrometer at ACERT. This description also includes a comparison of the effectiveness of the respective PDS pulse methods. In addition, the newer methods of 5-pulse DEER, which enables longer distances to be measured than by standard DEER, and 2D-DQC, which provides a convenient mapping for studying orientational coherence between spin labels and their interspin vector, are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note the density matrix also contains on the main diagonal ZQ S 1z S 2z terms (dipolar order), which can be generated by spin manipulation or in equilibrium at low temperatures. They will play no role in the ensuing analysis, unless explicitly mentioned.

  2. 2.

    This case, however, corresponds to strong coupling when the pseudosecular term cannot be neglected, necessitating replacing of a in Eq. (15) with 3a/2.

  3. 3.

    Relaxation will however modify the signal if the coupled spins have different relaxation times or relaxation is described by stretched exponentials (cf. Sect. 2.4).

  4. 4.

    That is two such diagrams should be combined into a graph to give all of 16 contributions.

  5. 5.

    Note that for both DQC and DEER, the expression for the signal contains as a minimum two terms, except for nonoverlapping spectra in DEER, i.e., it contains terms for the signal from spins 1 and 2, and in the general case they are not equal. But we show just one for brevity.

  6. 6.

    One could use just a t max of ~1.2T m in this case.

  7. 7.

    Microscopic order with macroscopic disorder.

  8. 8.

    Available for download through the ACERT web page www.acert.cornell.edu.

  9. 9.

    That is the fraction of spins contributing to the signal of interest.

Abbreviations

cw:

Continuous-wave

DEER:

Double electron–electron resonance

DQ, DQC:

Double-quantum, double-quantum coherence

DQF:

Double-quantum filtering

ESEEM:

Electron spin-echo envelope modulation

ESR:

Electron spin resonance

FID:

Free induction decay

hf:

Hyperfine

log:

Natural logarithm

MEM:

Maximum entropy method

MTSSL:

Methane-thiosulfonate spin-label

mw:

Microwave

PDS:

Pulsed dipolar spectroscopy

PELDOR:

Pulsed electron–electron double resonance

RPE:

Refocused primary echo

SNR:

Signal-to-noise ratio

SQ, SQC:

Single-quantum, single-quantum coherence

SSPA:

Solid-state power amplifier

TWTA:

Traveling-wave tube amplifier

References

  1. Borbat PP, Mchaourab HS, Freed JH (2002) Protein structure determination using long-distance constraints from double-quantum coherence ESR: study of T4-lysozyme. J Am Chem Soc 124(19):5304–5314

    CAS  Google Scholar 

  2. Jeschke G, Wegener C, Nietschke M, Jung H, Steinhoff H-J (2004) Interresidual distance determination by four-pulse double electron–electron resonance in an integral membrane protein: the Na+/proline transporter PutP of Escherichia coli. Biophys J 86(4):2551–2557

    CAS  Google Scholar 

  3. Zhou Z, DeSensi SC, Stein RA, Brandon S, Dixit M, McArdle EJ, Warren EM, Kroh HK, Song L, Cobb CE, Hustedt EJ, Beth AH (2005) Solution structure of the cytoplasmic domain of erythrocyte membrane band 3 determined by site-directed spin labeling. Biochemistry 44(46):15115–15128

    CAS  Google Scholar 

  4. McNulty JC, Silapie JL, Carnevali M, Farrar CT, Griffin RG, Formaggio F, Crisma M, Toniolo C, Millhauser GL (2001) Electron spin resonance of TOAC labeled peptides: folding transitions and high frequency spectroscopy. Biopolymers 55(6):479–485

    CAS  Google Scholar 

  5. Park S-Y, Borbat PP, Gonzalez-Bonet G, Bhatnagar J, Pollard AM, Freed JH, Bilwes AM, Crane BR (2006) Reconstruction of the chemotaxis receptor-kinase assembly. Nat Struct Mol Biol 13(5):400–407

    CAS  Google Scholar 

  6. Hilger D, Jung H, Padan E, Wegener C, Vogel K-P, Steinhoff H-J, Jeschke G (2005) Assessing oligomerization of membrane proteins by four-pulse DEER: pH-dependent dimerization of NhaA Na+/H + antiporter of E. coli. Biophys J 89(2):1328–1338

    CAS  Google Scholar 

  7. Milov AD, Erilov DA, Salnikov ES, Tsvetkov YD, Formaggio F, Toniolo C, Raap J (2005) Structure and spatial distribution of the spin-labelled lipopeptide trichogin GA IV in a phospholipid membrane studied by pulsed electron–electron double resonance (PELDOR). Phys Chem Chem Phys 7(8):1794–1799

    CAS  Google Scholar 

  8. Hubbell WL, Cafiso DS, Altenbach CA (2000) Identifying conformational changes with site-directed spin labeling. Nat Struct Biol 7(9):735–739

    CAS  Google Scholar 

  9. Hustedt EJ, Smirnov AI, Laub CF, Cobb CE, Beth AH (1997) Molecular distances from dipolar coupled spin-labels: the global analysis of multifrequency continuous wave electron paramagnetic resonance data. Biophys J 72(4):1861–1877

    CAS  Google Scholar 

  10. Bennati M, Robblee JH, Mugnaini V, Stubbe J, Freed JH, Borbat PP (2005) EPR distance measurements support a model for long-range radical initiation in E. coli ribonucleotide reductase. J Am Chem Soc 127(43):15014–15015

    CAS  Google Scholar 

  11. Fafarman AT, Borbat PP, Freed JH, Kirshenbaum K (2007) Characterizing the structure and dynamics of folded oligomers: pulsed ESR studies of peptoid helices. Chem Commun (4):377–379

    Google Scholar 

  12. Borbat PP, Ramlall TF, Freed JH, Eliezer D (2006) Inter-helix distances in lysophospholipid micelle-bound α-synuclein from pulsed ESR measurements. J Am Chem Soc 128(31):10004–10005

    CAS  Google Scholar 

  13. Dzikovski BG, Borbat PP, Freed JH (2004) Spin-labeled gramicidin a: channel formation and dissociation. Biophys J 87(5):3504–3517

    CAS  Google Scholar 

  14. Banham JE, Timmel CR, Abbott RJM, Lea SM, Jeschke G (2006) The characterization of weak protein-protein interactions: evidence from DEER for the trimerization of a von willebrand factor A domain in solution. Angew Chem Int Ed 45(7):1058–1061

    CAS  Google Scholar 

  15. Borbat PP, Freed JH (1999) Multiple-quantum ESR and distance measurements. Chem Phys Lett 313(1,2):145–154

    CAS  Google Scholar 

  16. Borbat PP, da Costa-Filho AJ, Earle KA, Moscicki JK, Freed JH (2001) Electron spin resonance in studies of membranes and proteins. Science 291(5502):266–269

    CAS  Google Scholar 

  17. Freed JH (2000) New technologies in electron spin resonance. Annu Rev Phys Chem 51:655–689

    CAS  Google Scholar 

  18. Fanucci GE, Cafiso DS (2006) Recent advances and applications of site-directed spin labeling. Curr Opin Struct Biol 16(5):644–653

    CAS  Google Scholar 

  19. Columbus L, Hubbell WL (2002) A new spin on protein dynamics. Trends Biochem Sci 27(6):288–295

    CAS  Google Scholar 

  20. Milov AD, Tsvetkov YD, Formaggio F, Crisma M, Toniolo C, Raap J (2003) Self-assembling and membrane modifying properties of a lipopeptaibol studied by CW-ESR and PELDOR spectroscopies. J Pept Sci 9(11–12):690–700

    CAS  Google Scholar 

  21. Denysenkov VP, Prisner TF, Stubbe J, Bennati M (2006) High-field pulsed electron–electron double resonance spectroscopy to determine the orientation of the tyrosyl radicals in ribonucleotide reductase. Proc Natl Acad Sci USA 103(36):13386–13390

    CAS  Google Scholar 

  22. Becker JS, Saxena S (2005) Double quantum coherence electron spin resonance on coupled Cu(II)-Cu(II) electron spins. Chem Phys Lett 414(1–3):248–252

    CAS  Google Scholar 

  23. Biglino D, Schmidt PP, Reijerse EJ, Lubitz W (2006) PELDOR study on the tyrosyl radicals in the R2 protein of mouse ribonucleotide reductase. Chemphyschem 8(1):58–62

    CAS  Google Scholar 

  24. Narr E, Godt A, Jeschke G (2002) Selective measurements of a nitroxide-nitroxide separation of 5 nm and a nitroxide-copper separation of 2.5 nm in a terpyridine-based copper(II) complex by pulse EPR spectroscopy. Angew Chem Int Ed 41(20):3907–3910

    CAS  Google Scholar 

  25. Codd R, Astashkin AV, Pacheco A, Raitsimring AM, Enemark JH (2002) Pulsed ELDOR spectroscopy of the Mo(V)/Fe(III) state of sulfite oxidase prepared by one-electron reduction with Ti(III) citrate. J Biol Inorg Chem 7(3):338–350

    CAS  Google Scholar 

  26. Elsaesser C, Brecht M, Bittl R (2002) Pulsed electron–electron double resonance on multinuclear metal clusters: assignment of spin projection factors based on the dipolar interaction. J Am Chem Soc 124(42):12606–12611

    CAS  Google Scholar 

  27. Upadhyay AK, Borbat PP, Wang J, Freed JH, Edmondson DE (2008) Determination of the oligomeric states of human and rat monoamine oxidases in the outer mitochondrial membrane and octyl beta-D-glucopyranoside micelles using pulsed dipolar electron spin resonance spectroscopy. Biochemistry 47(6):1554–1566

    CAS  Google Scholar 

  28. Astashkin AV, Kodera Y, Kawamori A (1994) Distance between tyrosines Z+ and D+ in plant photosystem II as determined by pulsed EPR. Biochim Biophys Acta 1187(1):89–93

    CAS  Google Scholar 

  29. Milov AD, Salikhov KM, Shirov MD (1981) Application of the double resonance method to electron spin echo in a study of the spatial distribution of paramagnetic centers in solids. Soviet Phys-Solid State 23:565–569

    Google Scholar 

  30. Milov AD, Maryasov AG, Tsvetkov YD (1998) Pulsed electron double resonance (PELDOR) and its applications in free-radicals research. Appl Magn Reson 15(1):107–143

    CAS  Google Scholar 

  31. Martin RE, Pannier M, Diederich F, Gramlich V Hubrich M, Spiess HW (1998) Determination of end-to-end distances in a series of TEMPO diradicals with a new four-pulse double electron electron resonance experiment. Angew Chem Int Ed 100(32):13428–13432

    Google Scholar 

  32. Larsen RG, Singel DJ (1993) Double electron–electron resonance spin-echo modulation: spectroscopic measurement of electron spin pair separations in orientationally disordered solids. J Chem Phys 98(7):5134–5146

    CAS  Google Scholar 

  33. Raitsimring AM, Salikhov KM (1985) Electron spin echo method as used to analyze the spatial distribution of paramagnetic centers. Bull Magn Reson 7(4):184–217

    CAS  Google Scholar 

  34. Salikhov KM, Dzyuba SA, Raitsimring A (1981) The theory of electron spin-echo signal decay resulting from dipole-dipole interactions between paramagnetic centers in solids. J Magn Reson 42(2):255–276

    CAS  Google Scholar 

  35. Borbat PP, Freed JH (2000) Distance measurements in biological systems by EPR. In: Berliner LJ, Eaton GR, Eaton SS (eds) Biological magnetic resonance, vol 19. Academic/Plenum, New York, pp 385–459

    Google Scholar 

  36. Jeschke G, Pannier M, Godt A, Spiess HW (2000) Dipolar spectroscopy and spin alignment in electron paramagnetic resonance. Chem Phys Lett 331(2,3,4):243–252

    CAS  Google Scholar 

  37. Kulik LV, Dzuba SA, Grigoryev IA, Tsvetkov YD (2001) Electron dipole-dipole interaction in ESEEM of nitroxide biradicals. Chem Phys Lett 343(3,4):315–324

    CAS  Google Scholar 

  38. Kurshev VV, Raitsimring AM, Tsvetkov YD (1989) Selection of dipolar interaction by the “2+1” pulse train ESE (1969–1992). J Magn Reson 81(3):441–454

    CAS  Google Scholar 

  39. Schiemann O, Piton N, Mu Y, Stock G, Engels JW, Prisner TF (2004) A PELDOR-based nanometer distance ruler for oligonucleotides. J Am Chem Soc 126(18):5722–5729

    CAS  Google Scholar 

  40. Steinhoff H-J (2004) Inter- and intra-molecular distances determined by EPR spectroscopy and site-directed spin labeling reveal protein-protein and protein-oligonucleotide interaction. Biol Chem 385(10):913–920

    CAS  Google Scholar 

  41. Fajer PG (2005) Site directed spin labelling and pulsed dipolar electron paramagnetic resonance (double electron–electron resonance) of force activation in muscle. J Phys Condens Matter 17(18):S1459–S1469

    CAS  Google Scholar 

  42. Cai Q, Kusnetzow AK, Hubbell WL, Haworth IS, Gacho GPC, Van Eps N, Hideg K, Chambers EJ, Qin PZ (2006) Site-directed spin labeling measurements of nanometer distances in nucleic acids using a sequence-independent nitroxide probe. Nucleic Acids Res 34(17):4722–4730

    CAS  Google Scholar 

  43. Freed JH (1967) Theory of saturation and double resonance effects in electron spin resonance spectra. 2. Exchange vs dipolar mechanisms. J Phys Chem 71(1):38–51

    CAS  Google Scholar 

  44. Freed JH (1966) Theory of spin relaxation via quantum-molecular systems – resonance effects. J Chem Phys 45(4):1251–1257

    CAS  Google Scholar 

  45. Freed JH (1965) Theory of saturation and double-resonance effects in ESR spectra. J Chem Phys 43(7):2312–2332

    CAS  Google Scholar 

  46. Cruickshank PAS, Bolton DR, Robertson DA, Hunter RI, Wylde RJ, Smith GM (2009) A kilowatt pulsed 94 GHz electron paramagnetic resonance spectrometer with high concentration sensitivity, high instantaneous bandwidth, and low dead time. Rev Sci Instrum 80(10):103102–103115

    Google Scholar 

  47. Hofbauer W, Earle KA, Dunnam CR, Moscicki JK, Freed JH (2004) High-power 95 GHz pulsed electron spin resonance spectrometer. Rev Sci Instrum 75(5):1194–1208

    CAS  Google Scholar 

  48. Denysenkov VP, Prisner TF, Stubbe J, Bennati M (2005) High-frequency 180 GHz PELDOR. Appl Magn Reson 29(2):375–384

    CAS  Google Scholar 

  49. Goldfarb D, Lipkin Y, Potapov A, Gorodetsky Y, Epel B, Raitsimring AM, Radoul M, Kaminker I (2008) HYSCORE and DEER with an upgraded 95 GHz pulse EPR spectrometer. J Magn Reson 194(1):8–15

    CAS  Google Scholar 

  50. Astashkin AV, Enemark JH, Raitsimring A (2006) 26.5-40 GHz K-a-band pulsed EPR spectrometer. Concepts Magn Reson Part B 29(3):125–136

    Google Scholar 

  51. Forrer J, Garcia-Rubio I, Schuhmam R, Tschaggelar R, Harmer J (2008) Cryogenic Q-band (35 GHz) probehead featuring large excitation microwave fields for pulse and continuous wave electron paramagnetic resonance spectroscopy: performance and applications. J Magn Reson 190(2):280–291

    CAS  Google Scholar 

  52. Gromov I, Forrer J, Schweiger A (2006) Probehead operating at 35 GHz for continuous wave and pulse electron paramagnetic resonance applications. Rev Sci Instrum 77(6), Article Number: 064704

    Google Scholar 

  53. Simovic B, Studerus P, Gustavsson S, Leturcq R, Ensslin K, Schuhmann R, Forrer J, Schweiger A (2006) Design of Q-band loop-gap resonators at frequencies of 34–36 GHz for single electron spin spectroscopy in semiconductor nanostructures. Rev Sci Instrum 77(6), Article Number: 064702

    Google Scholar 

  54. Tschaggelar R, Kasumaj B, Santangelo MG, Forrer J, Leger P, Dube H, Diederich F, Harmer J, Schuhmann R, Garcia-Rubio I, Jeschke G (2009) Cryogenic 35 GHz pulse ENDOR probehead accommodating large sample sizes: performance and applications. J Magn Reson 200(1):81–87

    CAS  Google Scholar 

  55. Mett RR, Sidabras JW, Golovina IS, Hyde JS (2008) Dielectric microwave resonators in TE(011) cavities for electron paramagnetic resonance spectroscopy. Rev Sci Instrum 79(9), Article Number: 094702

    Google Scholar 

  56. Mett RR, Sidabras JW, Hyde JS (2007) Uniform radio frequency fields in loop-gap resonators for EPR spectroscopy. Appl Magn Reson 31(3–4):573–589

    CAS  Google Scholar 

  57. Tkach I, Sicoli G, Hobartner C, Bennati M (2011) A dual-mode microwave resonator for double electron–electron spin resonance spectroscopy at W-band microwave frequencies. J Magn Reson 209(2):341–346

    CAS  Google Scholar 

  58. Borbat PP, Davis JH, Butcher SE, Freed JH (2004) Measurement of large distances in biomolecules using double-quantum filtered refocused electron spin-echoes. J Am Chem Soc 126(25):7746–7747

    CAS  Google Scholar 

  59. Jeschke G, Bender A, Paulsen H, Zimmermann H, Godt A (2004) Sensitivity enhancement in pulse EPR distance measurements. J Magn Reson 169(1):1–12

    CAS  Google Scholar 

  60. Milikisyants S, Groenen EJJ, Huber M (2008) Observer-selective double electron–electron-spin resonance, a pulse sequence to improve orientation selection. J Magn Reson 192(2):275–279

    CAS  Google Scholar 

  61. Milikisyants S, Scarpelli F, Finiguerra MG, Ubbink M, Huber M (2009) A pulsed EPR method to determine distances between paramagnetic centers with strong spectral anisotropy and radicals: the dead-time free RIDME sequence. J Magn Reson 201(1):48–56

    CAS  Google Scholar 

  62. Hirst SJ, Alexander N, Mchaourab HS, Meiler J (2011) RosettaEPR: an integrated tool for protein structure determination from sparse EPR data. J Struct Biol 173(3):506–514

    CAS  Google Scholar 

  63. Gaffney BJ, Bradshaw MD, Frausto SD, Wu F, Freed JH, Borbat P (2012) Locating a Lipid at the Portal to the Lipoxygenase Active Site. Biophys J 103(10):2134–2144

    CAS  Google Scholar 

  64. Bhatnagar J, Freed JH, Crane BR (2007) Rigid body refinement of protein complexes with long-range distance restraints from pulsed dipolar ESR. Two-component signaling systems. Methods Enzymol B 423:117–133

    Google Scholar 

  65. Bhatnagar J, Borbat PP, Pollard AM, Bilwes AM, Freed JH, Crane BR (2010) Structure of the ternary complex formed by a chemotaxis receptor signaling domain, the CheA histidine kinase, and the coupling protein CheW As determined by pulsed dipolar ESR spectroscopy. Biochemistry 49(18):3824–3841

    CAS  Google Scholar 

  66. Jeschke G, Chechik V, Ionita P, Godt A, Zimmermann H, Banham J, Timmel CR, Hilger D, Jung H (2006) DeerAnalysis2006 – a comprehensive software package for analyzing pulsed ELDOR data. Appl Magn Reson 30(3–4):473–498

    CAS  Google Scholar 

  67. Jeschke G, Panek G, Godt A, Bender A, Paulsen H (2004) Data analysis procedures for pulse ELDOR measurements of broad distance distributions. Appl Magn Reson 26(1–2):223–244

    CAS  Google Scholar 

  68. Polyhach Y, Bordignon E, Jeschke G (2011) Rotamer libraries of spin labelled cysteines for protein studies. Phys Chem Chem Phys 13(6):2356–2366

    CAS  Google Scholar 

  69. Chiang Y-W, Borbat PP, Freed JH (2005) Maximum entropy: a complement to Tikhonov regularization for determination of pair distance distributions by pulsed ESR. J Magn Reson 177(2):184–196

    CAS  Google Scholar 

  70. Chiang Y-W, Borbat PP, Freed JH (2005) The determination of pair distance distributions by pulsed ESR using Tikhonov regularization. J Magn Reson 172(2):279–295

    CAS  Google Scholar 

  71. Kim S, Brandon S, Zhou Z, Cobb CE, Edwards SJ, Moth CW, Parry CS, Smith JA, Lybrand TP, Hustedt EJ, Beth AH (2011) Determination of structural models of the complex between the cytoplasmic domain of erythrocyte band 3 and ankyrin-R repeats 13–24. J Biol Chem 286(23):20746–20757

    CAS  Google Scholar 

  72. Berliner LJ, Eaton GR, Eaton SS (2000) Distance measurements in biological systems by EPR, vol 19, Biological magnetic resonance. Kluwer, New York

    Google Scholar 

  73. Jeschke G (2002) Distance measurements in the nanometer range by pulse EPR. Chemphyschem 3(11):927–932

    CAS  Google Scholar 

  74. Dzuba SA (2005) Pulsed EPR structural studies in the nanometer range of distances. Russian Chem Rev 74(7):619–637

    CAS  Google Scholar 

  75. Prisner T, Rohrer M, MacMillan F (2001) Pulsed EPR spectroscopy: biological applications. Annu Rev Phys Chem 52:279–313

    CAS  Google Scholar 

  76. Borbat PP, Freed JH (2000) In: Berliner LJ, Eaton GR, Eaton SS (eds) Biological magnetic resonance. New York, Kluwer Academic

    Google Scholar 

  77. Abragam A (1961) The principles of nuclear magnetism, vol 386. Clarendon, Oxford, pp 442–451

    Google Scholar 

  78. Jeschke G, Spiess HW (2006) Distance measurements in solid-state NMR and EPR spectroscopy. In: Dolinsek J, Vilfan M, Zumer S (eds) Novel NMR and EPR techniques. Springer, Berlin, pp 21–63

    Google Scholar 

  79. Pake GE (1948) Nuclear resonance absorption in hydrated crystals: fine structure of the proton line. J Chem Phys 16:327–336

    CAS  Google Scholar 

  80. Rabenstein MD, Shin Y-K (1995) Determination of the distance between two spin labels attached to a macromolecule. Proc Natl Acad Sci USA 92(18):8239–8243

    CAS  Google Scholar 

  81. Hu KN, Song C, Yu HH, Swager TM, Griffin RG (2008) High-frequency dynamic nuclear polarization using biradicals: a multifrequency EPR lineshape analysis. J Chem Phys 128(5), Article Number: 052302

    Google Scholar 

  82. Persson M, Harbridge JR, Hammarstrom P, Mitri R, Martensson L-G, Carlsson U, Eaton GR, Eaton SS (2001) Comparison of electron paramagnetic resonance methods to determine distances between spin labels on human carbonic anhydrase II. Biophys J 80(6):2886–2897

    CAS  Google Scholar 

  83. Koteiche HA, Mchaourab HS (1999) Folding pattern of the a-crystallin domain in αA-crystallin determined by site-directed spin labeling. J Mol Biol 294(2):561–577

    CAS  Google Scholar 

  84. Hanson P, Anderson DJ, Martinez G, Millhauser G, Formaggio F, Crisma M, Toniolo C, Vita C (1998) Electron spin resonance and structural analysis of water soluble, alanine-rich peptides incorporating TOAC. Mol Phys 95(5):957–966

    CAS  Google Scholar 

  85. Xiao W, Poirier MA, Bennett MK, Shin Y-K (2001) The neuronal t-SNARE complex is a parallel four-helix bundle. Nat Struct Biol 8(4):308–311

    CAS  Google Scholar 

  86. Banham JE, Baker CM, Ceola S, Day IJ, Grant GH, Groenen EJJ, Rodgers CT, Jeschke G, Timmel CR (2008) Distance measurements in the borderline region of applicability of CW EPR and DEER: a model study on a homologous series of spin-labelled peptides. J Magn Reson 191(2):202–218

    CAS  Google Scholar 

  87. Lovett JE, Bowen AM, Timmel CR, Jones MW, Dilworth JR, Caprotti D, Bell SG, Wong LL, Harmer J (2009) Structural information from orientationally selective DEER spectroscopy. Phys Chem Chem Phys 11(31):6840–6848

    CAS  Google Scholar 

  88. Hahn EL (1950) Spin echoes. Phys Rev 80(4):580–594

    Google Scholar 

  89. Mims WB (1972) Envelope modulation in spin-echo experiments. Phys Rev B-Solid State 5(7):2409–2419

    Google Scholar 

  90. Mims WB, Peisach J (1978) Nuclear modulation effect in electron-spin echoes for complexes of Cu2+ and imidazole with N-14 and N-15. J Chem Phys 69(11):4921–4930

    CAS  Google Scholar 

  91. Schweiger A, Jeschke G (2001) Principles of pulse electron paramagnetic resonance. Oxford University Press, Oxford

    Google Scholar 

  92. Dikanov SA, Tsvetkov YD (1992) Electron spin echo envelope modulation (ESEEM) spectroscopy. CRC Press, Boca Raton

    Google Scholar 

  93. Misra SK, Borbat PP, Freed JH (2009) Calculation of double-quantum-coherence two-dimensional spectra: distance measurements and orientational correlations. Appl Magn Reson 36(2–4):237–258

    CAS  Google Scholar 

  94. Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of nuclear magnetic resonance in one and two dimensions. The international series of monographs on chemistry. Clarendon, Oxford

    Google Scholar 

  95. Slichter CP (1990) Principles of magnetic resonance, 3rd edn. Springer, Berlin

    Google Scholar 

  96. Cavanagh J, Fairbrother WJ, Palmer AG III, Skelton NJ (1996) Protein NMR spectroscopy: principles and practice. Protein NMR spectroscopy: principles and practice. Academic, San Diego

    Google Scholar 

  97. Corio PL (1966) Structure of high-resolution NMR spectra. Academic, New York

    Google Scholar 

  98. Bowman MK, Maryasov AG (2007) Dynamic phase shifts in nanoscale distance measurements by double electron electron resonance (DEER). J Magn Reson 185(2):270–282

    CAS  Google Scholar 

  99. Sorensen OW, Eich GW, Levitt MH, Bodenhausen G, Ernst RR (1983) Product operator-formalism for the description of NMR pulse experiments. Prog Nucl Magn Reson Spectrosc 16:163–192

    Google Scholar 

  100. Saxena S, Freed JH (1996) Double quantum two-dimensional Fourier transform electron spin resonance: distance measurements. Chem Phys Lett 251(1):102–110

    CAS  Google Scholar 

  101. Borbat PP, Freed JH (2007) Pro’s and con’s of pulse dipolar ESR: DQC and DEER. EPR Newslett 17(2–3):21–33

    Google Scholar 

  102. Saxena S, Freed JH (1997) Theory of double quantum two-dimensional electron spin resonance with application to distance measurements. J Chem Phys 107(5):1317–1340

    CAS  Google Scholar 

  103. Libertini LJ, Griffith OH (1970) Orientation dependence of electron spin resonance spectrum of di tert butyl nitroxide. J Chem Phys 53(4):1359–1367

    Google Scholar 

  104. Maryasov AG, Tsvetkov YD (2000) Formation of the pulsed electron–electron double resonance signal in the case of a finite amplitude of microwave fields. Appl Magn Reson 18(4):583–605

    Google Scholar 

  105. Milov AD, Ponomarev AB, Tsvetkov YD (1984) Electron–electron double resonance in electron spin echo: model biradical systems and the sensitized photolysis of decalin. Chem Phys Lett 110(1):67–72

    CAS  Google Scholar 

  106. Raitsimring A (2000) Distance measurements in biological systems by EPR. In: Berliner LJ, Eaton GR, Eaton SS (eds) Biological magnetic resonance, vol 19. Kluwer, New York, pp 385–459

    Google Scholar 

  107. Pannier M, Veit S, Godt A, Jeschke G, Spiess HW (2000) Dead-time free measurement of dipole-dipole interactions between electron spins. J Magn Reson 142(2):331–340

    CAS  Google Scholar 

  108. Weber A, Schiemann O, Bode B, Prisner TF (2002) PELDOR at S- and X-band frequencies and the separation of exchange coupling from dipolar coupling. J Magn Reson 157(2):277–285

    CAS  Google Scholar 

  109. Milov AD, Tsvetkov YD (1997) Double electron–electron resonance in electron spin echo. Conformations of spin-labeled poly-4-vinylpyridine in glassy solutions. Appl Magn Reson 12(4):495–504

    CAS  Google Scholar 

  110. Milov AD, Salikhov KM, Tsvetkov YD (1973) Phase relaxation of hydrogen atoms stabilized in an amorphous matrix. Soviet Phys-Solid State 15:802–806

    Google Scholar 

  111. Raitsimring AM, Salikhov KM, Umanskii BA, Tsvetkov YD (1974) Instantaneous diffusion in the electron spin echo of paramagnetic centers stabilized in solid matrixes. Fizika Tverdogo Tela (Sankt-Peterburg) 16(3):756–766

    CAS  Google Scholar 

  112. Lindgren M, Eaton GR, Eaton SS, Jonsson B-H, Hammarstrom P, Svensson M, Carlsson U (1997) Electron spin echo decay as a probe of aminoxyl environment in spin-labeled mutants of human carbonic anhydrase II. J Chem Soc Perkin Trans 2(12):2549–2554

    Google Scholar 

  113. Zecevic A, Eaton GR, Eaton SS, Lindgren M (1998) Dephasing of electron spin echoes for nitroxyl radicals in glassy solvents by non-methyl and methyl protons. Mol Phys 95(6):1255–1263

    CAS  Google Scholar 

  114. Huber M, Lindgren M, Hammarstrom P, Martensson L-G, Carlsson U, Eaton GR, Eaton SS (2001) Phase memory relaxation times of spin labels in human carbonic anhydrase II: pulsed EPR to determine spin label location. Biophys Chem 94(3):245–256

    CAS  Google Scholar 

  115. Bartucci R, Erilov DA, Guzzi R, Sportelli L, Dzuba SA, Marsh D (2006) Time-resolved electron spin resonance studies of spin-labelled lipids in membranes. Chem Phys Lipids 141(1–2):142–157

    CAS  Google Scholar 

  116. Georgieva ER, Ramlall TF, Borbat PP, Freed JH, Eliezer D (2010) The lipid-binding domain of wild type and mutant alpha-synuclein: compactness and interconversion between the broken and extended helix forms. J Biol Chem 285(36):28261–28274

    CAS  Google Scholar 

  117. Nevzorov AA, Freed JH (2001) A many-body analysis of the effects of the matrix protons and their diffusional motion on electron spin resonance line shapes and electron spin echoes. J Chem Phys 115(6):2416–2429

    CAS  Google Scholar 

  118. Georgieva ER, Ramlall TF, Borbat PP, Freed JH, Eliezer D (2008) Membrane-bound alpha-synuclein forms an extended helix: long-distance pulsed ESR measurements using vesicles, bicelles, and rodlike micelles. J Am Chem Soc 130(39):12856–12857

    CAS  Google Scholar 

  119. Ward R, Bowman A, Sozudogru E, El-Mkami H, Owen-Hughes T, Norman DG (2010) EPR distance measurements in deuterated proteins. J Magn Reson 207(1):164–167

    CAS  Google Scholar 

  120. Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94(3):630–638

    CAS  Google Scholar 

  121. Lueders P, Jeschke G, Yulikov M (2011) Double electron–electron resonance measured between Gd(3+) ions and nitroxide radicals. J Phys Chem Lett 2(6):604–609

    CAS  Google Scholar 

  122. Borbat PP, Freed JH (2007) Measuring distances by pulsed dipolar ESR spectroscopy: spin-labeled histidine kinases. In: Simon MI, Crane BR, Crane A (eds) Two-component signaling systems, Pt B, vol. 423. Methods in enzymology. Elsevier, San Diego, pp 52–116

    Google Scholar 

  123. Venters RA, Farmer BT II, Fierke CA, Spicer LD (1996) Characterizing the use of perdeuteration in NMR studies of large proteins: 13C, 15 N and 1H assignments of human carbonic anhydrase II. J Mol Biol 264(5):1101–1116

    CAS  Google Scholar 

  124. Horst R, Bertelsen EB, Fiaux J, Wider G, Horwich AL, Wuthrich K (2005) Direct NMR observation of a substrate protein bound to the chaperonin GroEL. Proc Natl Acad Sci USA 102(36):12748–12753

    CAS  Google Scholar 

  125. Hamel DJ, Dahlquist FW (2005) The contact interface of a 120 kD CheA-CheW complex by methyl TROSY interaction spectroscopy. J Am Chem Soc 127(27):9676–9677

    CAS  Google Scholar 

  126. Jeschke G, Koch A, Jonas U, Godt A (2002) Direct conversion of EPR dipolar time evolution data to distance distributions. J Magn Reson 155(1):72–82

    CAS  Google Scholar 

  127. Bowman MK, Maryasov AG, Kim N, DeRose VJ (2004) Visualization of distance distribution from pulsed double electron–electron resonance data. Appl Magn Reson 26(1–2):23–39

    CAS  Google Scholar 

  128. Lee S, Budil DE, Freed JH (1994) Theory of two-dimensional Fourier transform electron spin resonance for ordered and viscous fluids. J Chem Phys 101(7):5529–5558

    CAS  Google Scholar 

  129. Bhatnagar J, Sircar R, Borbat PP, Freed JH, Crane BR (2012) Self-association of the histidine kinase CheA as studied by pulsed dipolar ESR spectroscopy. Biophys J 102(9):2192–2201

    CAS  Google Scholar 

  130. Marko A, Margraf D, Cekan P, Sigurdsson ST, Schiemann O, Prisner TF (2010) Analytical method to determine the orientation of rigid spin labels in DNA. Phys Rev E 81(2), Article Number: 021911

    Google Scholar 

  131. Schiemann O, Cekan P, Margraf D, Prisner TF, Sigurdsson ST (2009) Relative orientation of rigid nitroxides by PELDOR: beyond distance measurements in nucleic acids. Angew Chem Int Ed 48(18):3292–3295

    CAS  Google Scholar 

  132. Endeward B, Butterwick JA, MacKinnon R, Prisner TF (2009) Pulsed electron–electron double-resonance determination of spin-label distances and orientations on the tetrameric potassium ion channel KcsA. J Am Chem Soc 131(42):15246–15250

    CAS  Google Scholar 

  133. Fawzi NL, Fleissner MR, Anthis NJ, Kalai T, Hideg K, Hubbell WL, Clore GM (2011) A rigid disulfide-linked nitroxide side chain simplifies the quantitative analysis of PRE data. J Biomol NMR 51(1–2):105–114

    CAS  Google Scholar 

  134. Fleissner MR, Bridges MD, Brooks EK, Cascio D, Kalai T, Hideg K, Hubbell WL (2011) Structure and dynamics of a conformationally constrained nitroxide side chain and applications in EPR spectroscopy. Proc Natl Acad Sci USA 108(39):16241–16246

    CAS  Google Scholar 

  135. Ruthstein S, Potapov A, Raitsimring AM, Goldfarb D (2005) Double electron electron resonance as a method for characterization of micelles. J Phys Chem B 109(48):22843–22851

    CAS  Google Scholar 

  136. Bode BE, Margraf D, Plackmeyer J, Durner G, Prisner TF, Schiemann O (2007) Counting the monomers in nanometer-sized oligomers by pulsed electron – electron double resonance. J Am Chem Soc 129(21):6736–6745

    CAS  Google Scholar 

  137. Jeschke G, Sajid M, Schulte M, Godt A (2009) Three-spin correlations in double electron–electron resonance. Phys Chem Chem Phys 11(31):6580–6591

    CAS  Google Scholar 

  138. Nevzorov AA, Freed JH (2001) Direct-product formalism for calculating magnetic resonance signals in many-body systems of interacting spins. J Chem Phys 115(6):2401–2415

    CAS  Google Scholar 

  139. Jeschke G, Polyhach Y (2007) Distance measurements on spin-labelled biomacromolecules by pulsed electron paramagnetic resonance. Phys Chem Chem Phys 9(16):1895–1910

    CAS  Google Scholar 

  140. Chandrasekhar S (1943) Stochastic problems in physics and astronomy. Rev Mod Phys 15(1):1–89

    Google Scholar 

  141. Milov AD, Tsvetkov YD (2000) Charge effect on relative distance distribution of Fremy’s radical ions in frozen glassy solution studied by PELDOR. Appl Magn Reson 18(2):217–226

    CAS  Google Scholar 

  142. Georgieva ER, Roy AS, Grigoryants VM, Borbat PP, Earle KA, Scholes CP, Freed JH (2012) Effect of freezing conditions on distances and their distributions derived from double electron electron resonance (DEER): a study of doubly-spin-labeled T4 lysozyme. J Magn Reson 216:69–77

    CAS  Google Scholar 

  143. Klauder JR, Anderson PW (1962) Spectral diffusion decay in spin resonance experiments. Phys Rev 125:912–932

    CAS  Google Scholar 

  144. Dzikovski BG, Borbat PP, Freed JH (2011) Channel and nonchannel forms of spin-labeled gramicidin in membranes and their equilibria. J Phys Chem B 115(1):176–185

    CAS  Google Scholar 

  145. Milov AD, Maryasov AG, Tsvetkov YD, Raap J (1999) Pulsed ELDOR in spin-labeled polypeptides. Chem Phys Lett 303(1, 2):135–143

    CAS  Google Scholar 

  146. Zou P, Mchaourab HS (2010) Increased sensitivity and extended range of distance measurements in spin-labeled membrane proteins: Q-band double electron–electron resonance and nanoscale bilayers. Biophys J 98(6):L18–L20

    CAS  Google Scholar 

  147. Borbat PP, Crepeau RH, Freed JH (1997) Multifrequency two-dimensional Fourier transform ESR: an X/Ku-band spectrometer. J Magn Reson 127(2):155–167

    CAS  Google Scholar 

  148. Gorcester J, Freed JH (1986) Two-dimensional Fourier transform ESR spectroscopy. J Chem Phys 85(9):5375–5377

    CAS  Google Scholar 

  149. Fauth JM, Schweiger A, Braunschweiler L, Forrer J, Ernst RR (1986) Elimination of unwanted echoes and reduction of dead time in 3-pulse electron spin-echo spectroscopy. J Magn Reson 66(1):74–85

    CAS  Google Scholar 

  150. Hoult DI, Richards RE (1975) Critical factors in design of sensitive high-resolution nuclear magnetic-resonance spectrometers. Proc R Soc Lond Ser A-Math Phys Eng Sci 344(1638):311–340

    CAS  Google Scholar 

  151. Yang ZY, Liu YP, Borbat P, Zweier JL, Freed JH, Hubbell WL (2012) Pulsed ESR dipolar spectroscopy for distance measurements in immobilized spin labeled proteins in liquid solution. J Am Chem Soc 134(24):9950–9952

    CAS  Google Scholar 

  152. Crepeau RH, Dulcic A, Gorcester J, Saarinen TR, Freed JH (1989) Composite pulses in time-domain ESR. J Magn Reson 84(1):184–190

    Google Scholar 

  153. Levitt MH (1982) Symmetrical composite pulse sequences for NMR population-inversion 1. Compensation of radiofrequency field inhomogeneity. J Magn Reson 48(2):234–264

    CAS  Google Scholar 

  154. Levitt MH (1986) Composite pulses. Prog Nucl Magn Reson Spectrosc 18:61–122

    CAS  Google Scholar 

  155. Levitt MH, Freeman R (1979) NMR population-inversion using a composite pulse. J Magn Reson 33(2):473–476

    Google Scholar 

  156. Shaka AJ, Pines A (1987) Symmetrical phase-alternating composite pulses. J Magn Reson 71(3):495–503

    Google Scholar 

  157. Zax DB, Goelman G, Vega S (1988) Amplitude-modulated composite pulses. J Magn Reson 80(2):375–382

    Google Scholar 

  158. Zax DB, Vega S (1989) Broad-band excitation pulses of arbitrary flip angle. Phys Rev Lett 62(16):1840–1843

    CAS  Google Scholar 

  159. Baum J, Tycko R, Pines A (1985) Broad-band and adiabatic inversion of a 2-level system by phase-modulated pulses. Phys Rev A 32(6):3435–3447

    CAS  Google Scholar 

  160. Geen H, Freeman R (1991) Band-selective radiofrequency pulses. J Magn Reson 93(1):93–141

    Google Scholar 

  161. Murdoch JB, Lent AH, Kritzer MR (1987) Computer-optimized narrow-band pulses for multislice imaging. J Magn Reson 74(2):226–263

    Google Scholar 

  162. Silver MS, Joseph RI, Hoult DI (1985) Selective spin inversion in nuclear magnetic-resonance and coherent optics through an exact solution of the Bloch-Riccati equation. Phys Rev A 31(4):2753–2755

    CAS  Google Scholar 

  163. Warren WS (1984) Effects of arbitrary laser or NMR pulse shapes on population-inversion and coherence. J Chem Phys 81(12):5437–5448

    CAS  Google Scholar 

  164. Salikhov KM, Schneider DJ, Saxena S, Freed JH (1996) A theoretical approach to the analysis of arbitrary pulses in magnetic resonance. Chem Phys Lett 262(1, 2):17–26

    CAS  Google Scholar 

  165. Suzuki M (1985) Decomposition formulas of exponential operators and lie exponentials with some applications to quantum mechanics and statistical physics. J Math Phys 26:601–612

    CAS  Google Scholar 

  166. Trotter HF (1959) On the product of semi-groups of operators. Proc Am Math Soc 10(4):545–551

    Google Scholar 

  167. Devasahayam N, Murugesan R, Matsumoto K, Mitchell JB, Cook JA, Subramanian S, Krishna MC (2004) Tailored sinc pulses for uniform excitation and artifact-free radio frequency time-domain EPR imaging. J Magn Reson 168(1):110–117

    CAS  Google Scholar 

  168. Rinard GA, Quine RW, Song R, Eaton GR, Eaton SS (1999) Absolute EPR spin echo and noise intensities. J Magn Reson 140(1):69–83

    CAS  Google Scholar 

  169. Mims WB (1965) Electron echo methods in spin resonance spectrometry. Rev Sci Instrum 36(10):1472–1479

    CAS  Google Scholar 

  170. Hara H, Tenno T, Shirakawa M (2007) Distance determination in human ubiquitin by pulsed double electron–electron resonance and double quantum coherence ESR methods. J Magn Reson 184(1):78–84

    CAS  Google Scholar 

  171. Borbat PP, Georgieva ER, Freed JH (2012) Improved sensitivity for long-distance measurements in biomolecules: five-pulse double electron-electron resonance. J Phys Chem Lett. doi: 10.1021/jz301788n

  172. Ghimire H, McCarrick RM, Budil DE, Lorigan GA (2009) Significantly improved sensitivity of Q-band PELDOR/DEER experiments relative to X-band is observed in measuring the intercoil distance of a leucine zipper motif peptide (GCN4-LZ). Biochemistry 48(25):5782–5784

    CAS  Google Scholar 

  173. Kaminker I, Florent M, Epel B, Goldfarb D (2011) Simultaneous acquisition of pulse EPR orientation selective spectra. J Magn Reson 208(1):95–102

    CAS  Google Scholar 

  174. Reginsson GW, Hunter RI, Cruickshank PAS, Bolton DR, Sigurdsson ST, Smith GM, Schiemann O (2012) W-band PELDOR with 1 kW microwave power: molecular geometry, flexibility and exchange coupling. J Magn Reson 216:175–182

    CAS  Google Scholar 

  175. Borbat PP, Surendhran K, Bortolus M, Zou P, Freed JH, Mchaourab HS (2007) Conformational motion of the ABC transporter MsbA induced by ATP hydrolysis. PLoS Biol 5(10):2211–2219

    CAS  Google Scholar 

  176. Yagi H, Banerjee D, Graham B, Huber T, Goldfarb D, Otting G (2011) Gadolinium tagging for high-precision measurements of 6 nm distances in protein assemblies by EPR. J Am Chem Soc 133(27):10418–10421

    CAS  Google Scholar 

  177. Potapov A, Song Y, Meade TJ, Goldfarb D, Astashkin AV, Raitsimring A (2010) Distance measurements in model bis-Gd(III) complexes with flexible “bridge”. Emulation of biological molecules having flexible structure with Gd(III) labels attached. J Magn Reson 205(1):38–49

    CAS  Google Scholar 

  178. Song Y, Meade TJ, Astashkin AV, Klein EL, Enemark JH, Raitsimring A (2011) Pulsed dipolar spectroscopy distance measurements in biomacromolecules labeled with Gd(III) markers. J Magn Reson 210(1):59–68

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Elka R. Georgieva for her help with model systems and figures. This work was supported by NIH grants NIH/NIGMS P41GM103521 and NIH/NCRR P41RR016292.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Signals in 3,4,5-Pulse DEER Sequences

Here, we derive the expression given by Eq. (40) for PELDOR/DEER (cf. Fig. 5a), using the spin Hamiltonian given by Eqs. (13) and (14) (which neglects pseudosecular terms), in the absence of pulses. We express H 0 in the frame of reference doubly rotating with frequencies ω 1 and ω 2 of mw pulses applied, respectively, to spins A and B, having their Larmor frequencies at Ω a and Ω b (cf. Slichter, p. 279, and assumptions therein [95]). Note that Eqs. (13) and (14) use spins 1 and 2, but for DEER pulse sequences we number spins by the subscripts a and b. In this frame of reference H 0 becomes

$$ {H_0}={\omega_a}{S_{az }}+{\omega_b}{S_{bz }}+a{S_{az }}{S_{bz }} $$
(63)

In Eq. (63) a is as in Eq. (14), ω a and ω b are the Larmor frequency offsets from ω 1 and ω 2 respectively. We further assume the following set of inequalities a ≪ γ e B 1a(b) ≪ |ω 1 − ω 2|. The first inequality allows us to neglect the dipolar coupling during the pulse, the second ensures that there may be only a small overlap of pulse excitations at the two frequencies, but we will retain related terms that may be produced in the course of calculations of the signal. (The first inequality, as related to A-spins, makes it easier for one to consider pseudosecular terms in conducting a more detailed analysis). Note that for a pair of spins, depending on angle θ, one of or both spins may contribute to the echo. We can assume that the first spin is always an A spin, but the second spin can be either A or B spin. To simplify this matter, we use when needed the subscripts numbering spins as 1 or 2.

The amplitude V(t) of the echo signal that we are interested in computing is given by the trace, Tr(S a+ ρ(t))/Tr(S a+ S a), where ρ(t) is the density matrix measured at time t after the first pulse in the sequence. Therefore in the end we retain in ρ only the terms in S a. We will follow the evolution of single-quantum in-phase coherences of spin 1, S 1a± created by the first π/2 pulse. They evolve due to the dipolar coupling aS 1z S 2z into anti-phase coherences S 1a± S 2z and vice versa; the process thus interconverts these coherences leading to their modulation by the dipolar frequency a/2 as described in Sect. 2.3.1. These coherences under the action of pulses and free evolution periods will turn out as detectable S a carrying this dipolar modulation.

The pulse sequences for 3-pulse PELDOR and 4-pulse DEER can be expressed in arrow representation respectively as:

$$ \begin{array}{lll} {P_{1a }}(\pi /2){\mathop{\longrightarrow}\limits^{H}_{0}({t}_{1}-t)}\;\;{P_{2b }}(\pi ){\mathop{\longrightarrow}\limits^{H_0(t) }}\;\;{P_{3a }}(\pi ){\mathop{\longrightarrow}\limits^{H}_{0}({t}_{1}+{t_{\mathrm{ e}}})}\;\;echo \hfill \cr {P_{1a }}(\pi /2)\mathop{\longrightarrow}\limits^{H}_{0}({t}_{1})\;\;{P_{2a }}(\pi ){\mathop{\longrightarrow}\limits^{H_0(t) }}\;\;{P_{3b }}(\pi ){\mathop{\longrightarrow}\limits^{H}_{0}({t}_{2}-t)}\;\;{P_{4a }}(\pi )\mathop{\longrightarrow}\limits^{H}_{0}({t}_{2}-{t_1}+{t_{\mathrm{ e}}})\;\;echo, \end{array} $$
(64)

where H 0(t) denotes free evolution for the duration of t due to H 0 and P ka(b) is the pulse propagator for kth pulse applied nominally at the frequency ω a or ω b . The primary echo produced by pulses 1 and 3 in 3-pulse PELDOR corresponds to a coherence pathway, p = (+1, −1). In 4-pulse DEER based on the refocused echo created by pulses 1, 2, and 4 coherences pass through a p = (−1, +1, −1) pathway. We describe the action of π-pulses by introducing probability p ka or p kb for the spin at ω a or ω b , respectively, to be flipped by the kth pulse. (We may drop the subscript a (or b), when unimportant.) The probability not to be flipped, q kc , is then 1 − p kc (where c is a or b). We denote the amount of S 1a± produced by the first π/2 pulse as h 1a . Note that q, p, and h correspond to standard amplitude factors for the action of selective pulses, for example, as defined in the literature [35]. For a spin at a resonant frequency offset ω from the frequency of the RF pulse, the probabilities p and q to be flipped or not flipped by the pulse with nominal flip angle β is given by

$$ p={\sin^2}(\beta u/2)/{u^2},\quad q=1-p $$
(65)

Here, \( {u^2}=1+{\omega^2}/\omega_{\mathrm{ mw}}^2 \) and ω mw = γ e B 1.

To manage free evolution, we introduce operators H z  ≡ ω a S 1z and Ω 12 ≡ aS 1z S 2z . Then the free evolution propagator is exp[−i(H z  + Ω 12)]. Note that H z and Ω 12 commute and we can consider them separately and write for the free evolution of shift operators S 1a± due to H z or Ω 12 the following:

$$ \begin{array}{lll} {S_{{1a\pm }}}{\mathop{\longrightarrow}\limits^{{{H_{z }}}t}}\;\;\;{S_{{1a\pm }}}{{\mathrm{ e}}^{{\mp \mathrm{ i}{\omega_a}t}}} \hfill \cr {S_{{1a\pm }}}{\mathop{\longrightarrow}\limits^{{{\varOmega_{12 }}}t}}\;\;{S_{{1a\pm }}}{(\rm cos}(at/2)\mp \mathrm{ 2i}{S_{2z }}{\rm sin}(at/2))\equiv {S_{{1a\pm }}}{D_{{\pm t}}} \end{array} $$
(66)

We numbered the spins in Eq. (66). Note that S z may correspond to spin 2 at ω a or ω b , since pseudosecular terms are neglected and the evolution due to weak dipolar coupling is then given by Eq. (15). Since first-order coherences of A-spins pass through the prescribed pathway and all pulses applied during the evolution are nominally π-pulses, we need to consider only the following actions of the pulses:

$$ \begin{array}{lll} {S_{{1a\pm }}}{\mathop{\longrightarrow}\limits^{{{P_{kb }}}}}\;\;\;{q_{kb }}{S_{{1a\pm }}},\quad \quad {S_{{1a\pm }}}{\mathop{\longrightarrow}\limits^{{{P_{ka }}}}}\;\;\;{p_{ka }}{S_{{1a\mp }}} \hfill \cr {S_{2z }}{\mathop{\longrightarrow}\limits^{{P_{kc}}}}\;\;\;\;({q_{kc}}-{p_{kc}}){S_{2z }}\end{array} $$
(67)

Here, P k represents the action of pulse k and subscript a or b is added to indicate at what frequency the pulse is applied. Other spin manipulations lead to pathways that do not contribute to the echo of interest. In the following, we drop the subscripts numbering spins. Since pulse excitations at the two frequencies have only small overlap, Eq. (67) is good approximation. We will disregard unessential phase shifts [98] introduced into S by the pulses applied at ω b . From Eqs. (66) and (67) we find that D t has the following properties:

$$ {D_t}{\mathop{\longrightarrow}\limits^{{{H_{kc }}}}}\;\;{q_{kc }}{D_t}+{p_{kc }}D_t^{*},\quad \quad D_t^{*}={D_{-t }},\quad \quad {D_{{{t_1}+{t_2}}}}={D_{{{t_1}}}}{D_{{{t_2}}}} $$
(68)

We first compute the final density operator ρ f for 3-pulse PELDOR by tracking the coherence pathway that lead to S a. We thus start from S a+ produced by the first π/2 pulse. Equations 67 and 68 reduce our task to merely writing all ensuing “dipolar trajectories”. By repeatedly applying Eqs. (67) and (68) to S a+, the following sequence of transformations defines the detectable density matrix element in PELDOR:

$$ \begin{array}{lll} {\rho_0}={S_{az }}{\mathop{\ \longrightarrow}\limits^{{{P_{1a }}}}}\;\;\;{h_{1a }}{S_{a+ }}{\mathop{\ \longrightarrow}\limits^{{{H_0}}(t)}}\;\;\;\;{h_{1a }}{S_{a+ }}{D_t}{{\mathrm{ e}}^{{-\mathrm{ i}{\omega_a}t}}} \cr {\mathop{\longrightarrow}\limits^{{{P_{2b }}}}}\;\;\;\;{h_{1a }}{q_{2a }}{S_{a+ }}({q_2}{D_t}+{p_2}{D_{-t }}){{\mathrm{ e}}^{{-\mathrm{ i}{\omega_a}t}}}{\mathop{\longrightarrow}\limits^{{{H_0}}(\tau -t)}}\;\;\;{h_{1a }}{q_{2a }}{S_{a+ }}({q_2}{D_{\tau }}+{p_2}{D_{{\tau -2t}}}){{\mathrm{ e}}^{{-\mathrm{ i}{\omega_a}\tau }}} \cr {\mathop{\longrightarrow}\limits^{{{P_{3a }}}}}\;\;{\ S_{a- }}{h_{1a }}{q_{2a }}{p_{3a }}({q_2}{q_3}{D_{\tau }}+{q_2}{p_3}{D_{{-\tau }}}+{p_2}{q_3}{D_{{\tau -2t}}}+{p_2}{p_3}{D_{{2t-\tau }}}){{\mathrm{ e}}^{{-\mathrm{ i}{\omega_a}\tau }}} \cr {\mathop{\longrightarrow}\limits^{{{H_0}}(\tau +\delta {t_{\mathrm{ e}}})}}\;\;\;{\ S_{a- }}{h_{1a }}{q_{2a }}{p_{3a }}({q_2}{q_3}{D_0}+{q_2}{p_3}{D_{{-2\tau }}}+{p_2}{q_3}{D_{-2t }}+{p_2}{p_3}{D_{{2t-2\tau }}}){{\mathrm{ e}}^{{\mathrm{ i}{\omega_a}\delta {t_{\rm e}}}}}\end{array} $$
(69)

Coefficients p k and q k inside the brackets refer to spin 2, which may be at ω b or ω a . The spin echo amplitude, V at time 2τ + δt e is then taken as the trace: Tr(S a+ S a(2τ + δt e))/Tr(S a+ S a). For simplicity, we neglect dipolar evolution during δt e and after retaining detectable in-phase coherences by substituting D 2t with their real parts, cos(at), we arrive at the expression for the echo signal

$$ \begin{array}{lll} V(\tau, t,\delta {t_{\mathrm{ e}}})=\left\langle {{h_{1a }}{q_{2a }}{p_{3a }}[{q_2}{q_3}+{q_2}{p_3}\cos (a\tau )+{p_2}{q_3}\cos (at)} \right. \cr {{\left. {\quad +{p_2}{p_3}\cos (a(t-\tau ))]{{\mathrm{ e}}^{{\mathrm{ i}{\omega_a}\delta {t_{\rm e}}}}}} \right\rangle}_{a,b }}\end{array} $$
(70)

The term in exp( a δτ e) together with all other frequency-dependent factors (p, q, h) after averaging over ω a,b produces the spin echo shape, V(δt e) so that Eq. (70) becomes equivalent to Eq. (40). The dipolar modulation in Eq. (70) is represented by the two terms: ~q 3[1 − p 2(1 − cos(at))] and ~ p 3 p 2 cos(a(t − τ)). The first term is the well-known formula for the PELDOR/DEER signal [30, 73]. The second “back-in-time” signal is relatively small if 〈p 3 p 2 a,b  ≪ 〈p 2 a,b . Usually, this is the case for DEER (but in the single-frequency DEER analog, “2 + 1,” both signals are comparable [38]). In Eq. (70), there are two more terms that are constant in t: one, which is time independent, corresponds to unaffected spin B; whereas another term in cos() corresponds to the dipolar signal between A spins in the limit of very small a (when pseudosecular term can be neglected). To fully account for their effects more detailed calculations have to be carried out, for example ones based on a modified product operator method as described by Borbat and Freed [35]. Then Eq. (70) becomes at first somewhat unwieldy (e.g., such as an approximate expression given by Raitsimring [106]), but it will simplify practically to Eq. (70) when the “+1” pumping pulse has only a small overlap with the rest of the pulses.

Derivation of the expression analogues to Eq. (70), but for 4-pulse DEER adds one more step to Eq. (69) doubling the number of terms in dipolar signals to a total of eight,

$$ V(t)\propto {B_a}\sum\limits_{k=1}^8 {{B_{bk }}\cos (a{t_k})} $$
(71)

where B a  = h 1a p 2a q 3a p 4a . Only four terms in Eq. (71) have a dependence on the position t of the pump pulse. Table 1 compiles B bk and respective time variables, t k defined in different ways for these terms.

Table 1 t-Dependent dipolar pathways in four-pulse sequence

The dipolar pathways in the 5-pulse DEER sequence were studied in [171] by employing a similar approach. We can describe them qualitatively using the data from Table 1. Signal (1) is the standard 4-pulse DEER signal whereas signals 2–4 are relatively weak. In the 5-pulse DEER sequence, (2) or (4) are no longer weak, since the extra pulse 5 following pulse 4 makes p 4 greater than p 3, thereby suppressing (1) and developing the 5-pulse dipolar signal (2). Alternatively, the extra pulse may have position 5′ right before pulse 2 and develops (4) due to increased p 2 and suppresses (1).

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Borbat, P.P., Freed, J.H. (2013). Pulse Dipolar Electron Spin Resonance: Distance Measurements. In: Timmel, C., Harmer, J. (eds) Structural Information from Spin-Labels and Intrinsic Paramagnetic Centres in the Biosciences. Structure and Bonding, vol 152. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2012_82

Download citation

Publish with us

Policies and ethics