Skip to main content
Log in

High-field EPR

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Among the numerous spectroscopic techniques utilized in photosynthesis research, high-field/high-frequency EPR and its pulse extensions ESE, ENDOR, ESEEM, and PELDOR play an important role in the endeavor to understand, on the basis of structure and dynamics data, dominant factors that control specificity and efficiency of light-induced electron- and proton-transfer processes in primary photosynthesis. Short-lived transient intermediates of the photocycle can be characterized by high-field EPR techniques, and detailed structural information can be obtained even from disordered sample preparations. The chapter describes how multifrequency high-field EPR methodology, in conjunction with mutation strategies for site-specific isotope or spin labeling and with the support of modern quantum-chemical computation methods for data interpretation, is capable of providing new insights into the photosynthetic transfer processes. The information obtained is complementary to that of protein crystallography, solid-state NMR and laser spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

EPR:

Electron paramagnetic resonance

mw:

Microwave

cw:

Continuous wave

TR:

Time resolved

rf:

Radio frequency

ENDOR:

Electron nuclear double resonance

PELDOR:

Pulsed electron electron double resonance

DEER:

Double electron electron resonance

DQC:

Double quantum coherence

ESEEM:

Electron spin echo envelope modulation

ESE:

Electron spin echo

PS:

Photosystem

RC:

Reaction center

ET:

Electron transfer

BChl:

Bacteriochlorophyll

BPhe:

Bacteriopheophytin

References

  • Abragam A (1961) The principles of nuclear magnetism. Oxford University Press, Oxford

    Google Scholar 

  • Allen JP, Feher G, Yeates TO, Komiya H, Rees DC (1987a) Structure of the reaction center from Rhodobacter sphaeroides R-26—the protein subunits. Proc Natl Acad Sci USA 84:6162–6166. doi:10.1073/pnas.84.17.6162

    PubMed  CAS  Google Scholar 

  • Allen JP, Feher G, Yeates TO, Komiya H, Rees DC (1987b) Structure of the reaction center from Rhodobacter sphaeroides R-26: the cofactors. Proc Natl Acad Sci USA 84:5730–5734. doi:10.1073/pnas.84.16.5730

    PubMed  CAS  Google Scholar 

  • Allgeier J, Disselhorst JAJM, Weber RT, Wenckebach WT, Schmidt J (1990) High-frequency pulsed electron spin resonance. In: Kevan L, Bowman MK (eds) Modern pulsed and continuous-wave electron spin resonance. Wiley, New York, pp 267–283

    Google Scholar 

  • Artz K, Williams JC, Allen JP, Lendzian F, Rautter J, Lubitz W (1997) Relationship between the oxidation potential and electron spin density of the primary electron donor in reaction centers from Rhodobacter sphaeroides. Proc Natl Acad Sci USA 94:13582–13587. doi:10.1073/pnas.94.25.13582

    PubMed  CAS  Google Scholar 

  • Atherton NM (1993) Principles of electron spin resonance. Ellis Horwood, New York

    Google Scholar 

  • Barra AL, Brunel LC, Robert JB (1990) EPR spectroscopy at very high-field. Chem Phys Lett 165:107–109. doi:10.1016/0009-2614(90)87019-N

    CAS  Google Scholar 

  • Becerra LR, Gerfen GJ, Bellew BF, Bryant JA, Hall DA, Inati SJ, Weber RT, Un S, Prisner TF, McDermott AE, Fishbein KW, Kreischer KE, Temkin RJ, Singel DJ, Griffin RG (1995) A spectrometer for dynamic nuclear-polarization and electron-paramagnetic-resonance at high frequencies. J Magn Reson A 117:28–40. doi:10.1006/jmra.1995.9975

    CAS  Google Scholar 

  • Bennati M, Prisner TF (2005) New developments in high-field electron paramagnetic resonance with applications in structural biology. Rep Prog Phys 68:411–448. doi:10.1088/0034-4885/68/2/R05

    CAS  Google Scholar 

  • Berliner LJ, Eaton SS, Eaton GR (eds) (2000) Distance measurements in biological systems by EPR, biological magnetic resonance, vol 19. Kluwer, New York

    Google Scholar 

  • Bixon M, Fajer J, Feher G, Freed JH, Gamliel D, Hoff AJ, Levanon H, Möbius K, Nechushtai R, Norris JR, Scherz A, Sessler JL, Stehlik D (1992) Primary events in photosynthesis—problems, speculations, controversies, and future-trends. Isr J Chem 32:369–518

    Google Scholar 

  • Bloeß A, Möbius K, Prisner TF (1998) High-frequency/high-field electron spin echo envelope modulation study of nitrogen hyperfine and quadrupole interactions on a disordered powder sample. J Magn Reson 134:30–35. doi:10.1006/jmre.1998.1474

    PubMed  Google Scholar 

  • Blok H, Disselhorst JAJM, Orlinskii SB, Schmidt J (2004) A continuous-wave and pulsed electron spin resonance spectrometer operating at 275 GHz. J Magn Reson 166:92–99. doi:10.1016/j.jmr.2003.10.011

    PubMed  CAS  Google Scholar 

  • Borbat PP, Freed JH (1999) Multiple-quantum ESR and distance measurements. Chem Phys Lett 313:145–154. doi:10.1016/S0009-2614(99)00972-0

    CAS  Google Scholar 

  • Borbat PP, Freed JH (2000) Double quantum ESR and distance measurements. In: Berliner LJ, Eaton SS, Eaton GR (eds) Distance measurements in biological systems by EPR, biological magnetic resonance. Kluwer, New York, pp 383–459

    Google Scholar 

  • Borbat PP, Freed JH (2007) Pros and cons of pulsed dipolar ESR: DQC & DEER. EPR Newsl 17:21–33

    Google Scholar 

  • Borbat PP, Costa-Filho AJ, Earle KA, Moscicki JK, Freed JH (2001) Electron spin resonance in studies of membranes and proteins. Science 291:266–269. doi:10.1126/science.291.5502.266

    PubMed  CAS  Google Scholar 

  • Bratt PJ, Heathcote P, Hassan A, van Tol J, Brunel LC, Schrier J, Angerhofer A (2003) EPR at 24 T of the primary donor radical cation from Blastochloris viridis. Chem Phys 294:277–284. doi:10.1016/S0301-0104(03)00281-7

    CAS  Google Scholar 

  • Bresgunov AY, Dubinskii AA, Krimov VN, Petrov YG, Poluektov OG, Lebedev YS (1991) Pulsed EPR in 2-mm band. Appl Magn Reson 2:715–728

    Google Scholar 

  • Burghaus O, Toth-Kischkat A, Klette R, Möbius K (1988) Proton ENDOR at a microwave frequency of 97 GHz. J Magn Reson 80:383–388

    CAS  Google Scholar 

  • Burghaus O, Rohrer M, Götzinger T, Plato M, Möbius K (1992) A novel high-field high-frequency EPR and ENDOR spectrometer operating at 3 mm wavelength. Meas Sci Technol 3:765–774. doi:10.1088/0957-0233/3/8/013

    Google Scholar 

  • Burghaus O, Plato M, Rohrer M, Möbius K, MacMillan F, Lubitz W (1993) 3-mm High-field EPR on semiquinone radical anions Q•− related to photosynthesis and on the primary donor P•+ and acceptor Q•− in reaction centers of Rhodobacter sphaeroides R-26. J Phys Chem 97:7639–7647. doi:10.1021/j100131a037

    CAS  Google Scholar 

  • Carrington A, McLachlan AD (1967) Introduction to magnetic resonance. Harper, New York

    Google Scholar 

  • Chemerisov SD, Grinberg OY, Tipikin DS, Lebedev YS, Kurreck H, Möbius K (1994) Mechanically induced radical pair formation in porphyrin quinone and related donor-acceptor mixtures—unusual stability and zero-field splittings. Chem Phys Lett 218:353–361. doi:10.1016/0009-2614(94)00005-0

    CAS  Google Scholar 

  • Chirino AJ, Lous EJ, Huber M, Allen JP, Schenck CC, Paddock ML, Feher G, Rees DC (1994) Crystallographic analyses of site-directed mutants of the photosynthetic reaction center from Rhodobacter sphaeroides. Biochemistry 33:4584–4593. doi:10.1021/bi00181a020

    PubMed  CAS  Google Scholar 

  • Coremans JWA, van Gastel M, Poluektov OG, Groenen EJJ, den Blaauwen T, van Pouderoyen G, Canters GW, Nar H, Hammann C, Messerschmidt A (1995) An ENDOR and ESEEM study of the blue copper protein azurin. Chem Phys Lett 235:202–210. doi:10.1016/0009-2614(95)00114-J

    CAS  Google Scholar 

  • Debus RJ, Feher G, Okamura MY (1986) Iron-depleted reaction centers from Rhodopseudomonas sphaeroides R-26.1: characterization and reconstitution with Fe2+, Mn2+, Co2+, Ni2+, Cu2+ and Zn2+. Biochemistry 25:2276–2287. doi:10.1021/bi00356a064

    PubMed  CAS  Google Scholar 

  • Denysenkov VP, Prisner TF, Stubbe J, Bennati M (2005) High-Frequency 180 GHz PELDOR. Appl Magn Reson 29:375–384

    CAS  Google Scholar 

  • Denysenkov VP, Prisner TF, Stubbe J, Bennati M (2006) High-field pulsed electron-electron double resonance spectroscopy to determine the orientation of the tyrosyl radicals in ribonucleotide reductase. Proc Natl Acad Sci USA 103:13386–13390. doi:10.1073/pnas.0605851103

    PubMed  CAS  Google Scholar 

  • Disselhorst JAJM, van der Meer H, Poluektov OG, Schmidt J (1995) A pulsed EPR and ENDOR spectrometer operating at 95 GHz. J Magn Reson A 115:183–188. doi:10.1006/jmra.1995.1165

    CAS  Google Scholar 

  • Dorio MM, Freed JH (eds) (1979) Multiple electron resonance spectroscopy. Plenum, New York

    Google Scholar 

  • Doubinski AA (1998) Advanced EPR in millimeter bands and very high fields. In: Atherton NM, Davies MJ, Gilbert BC (eds) Electron paramagnetic resonance, vol 19. Royal Society of Chemistry, Cambridge, pp 211–233

    Google Scholar 

  • Dubinskii AA, Grishin YA, Savitsky AN, Möbius K (2002) Submicrosecond field-jump device for pulsed high-field ELDOR. Appl Magn Reson 22:369–386

    Google Scholar 

  • Dzuba SA, Tsvetkov YD, Maryasov AG (1992) Echo-induced EPR spectra of nitroxides in organic glasses: model of orientational molecular motions near equilibrium position. Chem Phys Lett 188:217–222. doi:10.1016/0009-2614(92)90012-C

    CAS  Google Scholar 

  • Earle KA, Freed JH (1999) Quasioptical hardware for a flexible FIR-EPR spectrometer. Appl Magn Reson 16:247–272

    CAS  Google Scholar 

  • Earle KA, Dzikovski B, Hofbauer W, Moscicki JK, Freed JH (2005) High-frequency ESR at ACERT. Magn Reson Chem 43:S256–S266. doi:10.1002/mrc.1684

    PubMed  CAS  Google Scholar 

  • Ermler U, Fritzsch G, Buchanan SK, Michel H (1994) Structure of the photosynthetic reaction center from Rhodobacter sphaeroides at 2.65Å resolution. Structure 2:925–936. doi:10.1016/S0969-2126(94)00094-8

    PubMed  CAS  Google Scholar 

  • Feher G (1957) Sensitivity considerations in microwave paramagnetic resonance absorption techniques. Bell Syst Tech J 36:449–484

    Google Scholar 

  • Flores M, Isaacson R, Abresch E, Calvo R, Lubitz W, Feher G (2006) Protein-cofactor interactions in bacterial reaction centers from Rhodobacter sphaeroides R-26: I. Identification of the ENDOR lines associated with the hydrogen bonds to the primary quinone Q •−A . Biophys J 90:3356–3362. doi:10.1529/biophysj.105.077883

    PubMed  CAS  Google Scholar 

  • Flores M, Isaacson R, Abresch E, Calvo R, Lubitz W, Feher G (2007) Protein-cofactor interactions in bacterial reaction centers from Rhodobacter sphaeroides R-26: II. Geometry of the hydrogen bonds to the primary quinone Q(A)(-) by H-1 and H-2 ENDOR spectroscopy. Biophys J 92:671–682. doi:10.1529/biophysj.106.092460

    PubMed  CAS  Google Scholar 

  • Freed JH (2000) New technologies in electron spin resonance. Annu Rev Phys Chem 51:655–689. doi:10.1146/annurev.physchem.51.1.655

    PubMed  CAS  Google Scholar 

  • Freed JH (2004) The development of high-field/high-frequency ESR. In: Grinberg O, Berliner LJ (eds) Very high frequency (VHF) ESR/EPR, vol 22. Kluwer/Plenum Publishers, New York, pp 19–45

    Google Scholar 

  • Fuchs MR, Prisner TF, Möbius K (1999) A high-field/high-frequency heterodyne induction-mode electron paramagnetic resonance spectrometer operating at 360 GHz. Rev Sci Instrum 70:3681–3683. doi:10.1063/1.1149977

    CAS  Google Scholar 

  • Fuchs MR, Schnegg A, Plato M, Schulz C, Müh F, Lubitz W, Möbius K (2003) The primary donor cation P+• in potosynthetic reaction centers of site-directed mutants of Rhodobacter sphaeroides: g-tensor shifts revealed by high-field EPR at 360 GHz/12.8 T. Chem Phys 294:371–384. doi:10.1016/S0301-0104(03)00319-7

    CAS  Google Scholar 

  • Fuchs M, Schnegg A, Möbius K (2004) Free University Berlin, unpublished results

  • Fuhs M, Möbius K (2002) Pulsed-high field/high-frequency epr spectroscopy. In: Bertier C, Levy PL, Martinez G (eds) Lecture notes in physics, vol 595. Springer, Berlin, pp 476–493

    Google Scholar 

  • Goldfarb D (1996) Time domain EPR. In: Gilbert BC, Davies MJ, Murphy DM (eds) Electron paramagnetic resonance, vol 15. Royal Society of Chemistry, Cambridge, pp 182–243

    Google Scholar 

  • Goldfarb D, Krymov V (2004) W-band pulsed ENDOR of transition metal centers. In: Grinberg O, Berliner LJ (eds) Very high frequency (VHF) ESR/EPR, vol 22. Kluwer/Plenum, New York, pp 305–351

    Google Scholar 

  • Goldfarb D, Lipkin Y, Potapov A, Gorodetsky Y, Epel B, Raitsimring AM, Radoul M, Kaminker I (2008) HYSCORE and DEER with an upgraded 95 GHz pulse EPR spectrometer. J Magn Reson 194:8–15. doi:10.1016/j.jmr.2008.05.019

    PubMed  CAS  Google Scholar 

  • Grinberg O, Berliner LJ (eds) (2004) Very high frequency (VHF) ESR/EPR, biological magnetic resonance, vol 22. Kluwer/Plenum, New York

    Google Scholar 

  • Grinberg O, Dubinskii AA (2004) The early years. In: Grinberg O, Berliner LJ (eds) Very high frequency (VHF) ESR/EPR, biological magnetic resonance, vol 22. Kluwer/Plenum Publishers, New York, pp 1–15

    Google Scholar 

  • Grinberg OJ, Dubinskii AA, Shuvalov VF, Oranskii LG, Kurochkin VI, Lebedev JS (1976) Submillimeter ESR spectroscopy of free-radical. Dokl Akad Nauk SSSR 230:884–887

    CAS  Google Scholar 

  • Grishin YA, Fuchs MR, Schnegg A, Dubinskii AA, Dumesh BS, Rusin FS, Bratman VL, Möbius K (2004) Pulsed orotron—a new microwave source for submillimeter pulse high-field electron paramagnetic resonance spectroscopy. Rev Sci Instrum 75:2926–2936. doi:10.1063/1.1778071

    CAS  Google Scholar 

  • Hagen WR (1989) g-Strain: inhomogeneous broadening in metalloprotein EPR. In: Hoff AJ (ed) Advanced EPR, applications in biology and biochemistry. Elsevier, Amsterdam, pp 785–812

    Google Scholar 

  • Haindl E, Möbius K, Oloff H (1985) A 94 GHz EPR spectrometer with Fabry-Perot resonator. Z Naturforsch A 40:169–172

    Google Scholar 

  • Hertel MM, Denysenkov VP, Bennati M, Prisner TF (2005) Pulsed 180-GHz EPR/ENDOR/PELDOR spectroscopy. Magn Reson Chem 43:S248–S255. doi:10.1002/mrc.1681

    PubMed  CAS  Google Scholar 

  • Höfer P, Kamlowski A, Maresch GG, Schmalbein D, Weber RT (2004) The bruker ELEXIS E600/680 W-band spectrometer series. In: Grinberg O, Berliner LJ (eds) Very high frequency (VHF) ESR/EPR, vol 22. Kluwer/Plenum Publishers, New York, pp 401–429

    Google Scholar 

  • Hoff AJ (ed) (1989) Advanced EPR, applications in biology and biochemistry. Elsevier, Amsterdam

    Google Scholar 

  • Hoff AJ, Deisenhofer J (1997) Photophysics of photosynthesis. Structure and spectroscopy of reaction centers of purple bacteria. Phys Rep 287:2–247. doi:10.1016/S0370-1573(97)00004-5

    Google Scholar 

  • Hornig AW, Hyde JS (1963) Paramagnetic resonance in triplet naphthalene at liquid helium temperatures. Mol Phys 6:33–41. doi:10.1080/00268976300100031

    CAS  Google Scholar 

  • Huber M, Törring JT (1995) High-field EPR on the primary electron donor cation radical in single crystals of heterodimer mutant reaction centers of photosynthetic bacteria—first characterization of the g-tensor. Chem Phys 194:379–385. doi:10.1016/0301-0104(95)00047-R

    CAS  Google Scholar 

  • Huber M, Törring JT, Plato M, Finck U, Lubitz W, Feick R, Schenck CC, Möbius K (1995) Investigation of the electronic structure of the primary donor in bacterial photosynthesis—measurements of the anisotropy of the electronic g-tensor using high-field/high-frequency EPR. In: Calzaferri G (ed) J Sol Energy Mater Sol Cells 38:119–126

  • Huber M, Isaacson RA, Abresh EC, Gaul D, Schenck CC, Feher G (1996) Electronic structure of the oxidized primary electron donor of the HL (M202) and HL (L173) heterodimer mutants of the photosynthetic bacterium Rhodobacter sphaeroides: ENDOR on single crystals of reaction centers. Biochim Biophys Acta 1273:108–128. doi:10.1016/0005-2728(95)00134-4

    Google Scholar 

  • Isaacson RA, Lendzian F, Abresch EC, Lubitz W, Feher G (1995) Electronic-structure of Q •−A in reaction centers from Rhodobacter Sphaeroides. 1. Electron-paramagnetic-resonance in single-crystals. Biophys J 69:311–322. doi:10.1016/S0006-3495(95)79936-2

    PubMed  CAS  Google Scholar 

  • Jeschke G (2005) Pulsed electron electron double resonance. EPR Newsl 14:14–16

    Google Scholar 

  • Jeschke G, Bender A, Paulsen H, Zimmermann H, Godt A (2004) Sensitivity enhancement in pulse EPR distance measurements. J Magn Reson 169:1–12. doi:10.1016/j.jmr.2004.03.024

    PubMed  CAS  Google Scholar 

  • Jortner J, Bixon M (eds) (1999) Electron transfer—from isolated molecules to biomolecules. Part I, vol 106. Wiley, New York

    Google Scholar 

  • Kirilina EP, Prisner TF, Bennati M, Endeward B, Dzuba SA, Fuchs MR, Möbius K, Schnegg A (2005) Molecular dynamics of nitroxides in glasses as studied by multi-frequency EPR. Magn Reson Chem 43:S119–S129. doi:10.1002/mrc.1677

    PubMed  CAS  Google Scholar 

  • Kleinfeld D, Okamura MY, Feher G (1984) Electron-transfer kinetics in photosynthetic reaction centers cooled to cryogenic temperatures in the charge-separated state: evidence for light-induced structural changes. Biochemistry 23:5780–5786. doi:10.1021/bi00319a017

    PubMed  CAS  Google Scholar 

  • Klette R, Törring JT, Plato M, Möbius K, Bönigk B, Lubitz W (1993) Determination of the g tensor of the primary donor cation radical in single crystals of Rhodobacter sphaeroides R-26 reaction centers by 3-mm high-field EPR. J Phys Chem 97:2020–2051. doi:10.1021/j100111a047

    Google Scholar 

  • Larsen RG, Singel DJ (1993) Double electron-electron resonance spin-echo modulation—spectroscopic measurement of electron-spin pair separations in orientationally disordered solids. J Chem Phys 98:5134–5146. doi:10.1063/1.464916

    CAS  Google Scholar 

  • Lendzian F, Huber M, Isaacson RA, Endeward B, Plato M, Bönigk B, Möbius K, Lubitz W, Feher G (1993) The electronic-structure of the primary donor cation-radical in Rhodobacter sphaeroides R-26—ENDOR and triple-resonance studies in single-crystals of reaction centers. Biochim Biophys Acta 1183:139–160. doi:10.1016/0005-2728(93)90013-6

    CAS  Google Scholar 

  • Liang ZC, Freed JH (1999) An assessment of the applicability of multifrequency ESR to study the complex dynamics of biomolecules. J Phys Chem B 103:6384–6396. doi:10.1021/jp9907746

    CAS  Google Scholar 

  • Lubitz W (1991) EPR and ENDOR studies of chlorophyll cation and anion radicals. In: Scheer H (ed) Chlorophylls. CRC Press, Boca Raton, FL, pp 903–944

    Google Scholar 

  • Lubitz W (2002) Pulse EPR and ENDOR studies of light-induced radicals and triplet states in photosystem II of oxygenic photosynthesis. Phys Chem Chem Phys 4:5539–5545. doi:10.1039/b206551g

    CAS  Google Scholar 

  • Lubitz W (2004) EPR in Photosynthesis. In: Gilbert BC, Davies MJ, Murphy DM (eds) Electron Paramagnetic Resonance, vol 19. Royal Society of Chemistry, Cambridge, pp 174–242

    Google Scholar 

  • Lubitz W, Feher G (1999) The Primary and Secondary Acceptors in Bacterial Photosynthesis III. Characterization of the Quinone Radicals QA- and QB- by EPR and ENDOR. Appl Magn Reson 17:1–48

    CAS  Google Scholar 

  • Lubitz W, Möbius K, Dinse KP (eds) (2005) High-field EPR in Biology, Chemistry and Physics. Magn Reson Chem 43:S1–S266

  • Lynch WB, Earle KA, Freed JH (1988) 1-mm Wave electron-spin-resonance spectrometer. Rev Sci Instr 59:1345–1351

    CAS  Google Scholar 

  • Maniero AL (2004) High frequency ENDOR spectroscopy. In: Grinberg O, Berliner LJ (eds) Very high frequency (VHF) ESR/EPR, vol 22. Kluwer/Plenum, New York, pp 478–494

    Google Scholar 

  • Millhauser GL, Freed JH (1984) Two-dimensional electron spin echo spectroscopy and slow motions. J Chem Phys 81:37–48. doi:10.1063/1.447316

    CAS  Google Scholar 

  • Milov AD, Salikohov KM, Shirov MD (1981) Application of ENDOR in electron-spin echo for paramagnetic center space distribution in solids. Fiz Tverd Tela 23:975–982

    CAS  Google Scholar 

  • Milov AD, Ponomarev AB, Tsvetkov YD (1984a) Electron electron double-resonance in electron-spin echo—model biradical systems and the sensitized photolysis of decalin. Chem Phys Lett 110:67–72. doi:10.1016/0009-2614(84)80148-7

    CAS  Google Scholar 

  • Milov AD, Ponomarev AB, Tsvetkov YD (1984b) Modulation beats of signal of double electron-electron resonance in spin-echo for biradical systems. J Struct Chem 25:710–713. doi:10.1007/BF00747913

    Google Scholar 

  • Milov AD, Maryasov AG, Tsvetkov YD (1998) Pulsed electron double resonance (PELDOR) and its applications in free-radicals research. Appl Magn Reson 15:107–143

    CAS  Google Scholar 

  • Mims WB (1972) Envelope modulation in spin-echo experiments. Phys Rev B 5:2409–2419. doi:10.1103/PhysRevB.5.2409

    Google Scholar 

  • Möbius K (1995) High-field high-frequency EPR/ENDOR—a powerful new tool in photosynthesis research. Appl Magn Reson 9:389–407

    Google Scholar 

  • Möbius K (2000) Primary processes in photosynthesis: what do we learn from high-field EPR spectroscopy? Chem Soc Rev 29:129–139. doi:10.1039/a706426h

    Google Scholar 

  • Möbius K (ed) (2001) High-field and high-frequency electron paramagnetic resonance. Appl Magn Reson 21(3–4):255

    Google Scholar 

  • Möbius K, Goldfarb D (2008) High-field/high-frequency electron paramagnetic resonance involving single- and multiple-transition schemes. In: Aartsma TJ, Matysik J (eds) Biophysical techniques in photosynthesis, vol II. Springer, Dordrecht, pp 267–304

    Google Scholar 

  • Möbius K, Savitsky A (2009) High-field EPR spectroscopy on proteins and their model systems: characterization of transient paramagnetic states. RSC Publishing, London

    Google Scholar 

  • Möbius K, Savitsky A, Schnegg A, Plato M, Fuchs M (2005) High-field EPR spectroscopy applied to biological systems: characterization of molecular switches for electron and ion transfer. Phys Chem Chem Phys 7:19–42. doi:10.1039/b412180e

    PubMed  Google Scholar 

  • Moll HP, Kutter C, van Tol J, Zuckerman H, Wyder P (1999) Principles and performance of an electron spin echo spectrometer using far infrared lasers as excitation sources. J Magn Reson 137:46–58. doi:10.1006/jmre.1998.1668

    PubMed  CAS  Google Scholar 

  • Müh F, Bibikova M, Lendzian F, Oesterhelt D, Lubitz W (1998) Pigment-protein interactions in reaction centers of Rhodopseudomonas viridis: ENDOR Study of the oxidized primary donor in site-directed mutants. In: Garab G (ed) Photosynthesis: mechanisms and effects, vol 2. Kluwer, Dordrecht, pp 763–766

    Google Scholar 

  • Müh F, Lendzian F, Roy M, Williams JC, Allen JP, Lubitz W (2002) Pigment-protein interactions in bacterial reaction centers and their influence on oxidation potential and spin density distribution of the primary donor. J Phys Chem B 106:3226–3236. doi:10.1021/jp0131119

    Google Scholar 

  • Muller F, Hopkins MA, Coron N, Grynberg M, Brunel LC, Martinez G (1989) A high magnetic-field EPR spectrometer. Rev Sci Instrum 60:3681–3684. doi:10.1063/1.1140474

    CAS  Google Scholar 

  • Pannier M, Veit S, Godt A, Jeschke G, Spiess HW (2000) Dead-time free measurement of dipole-dipole interactions between electron spins. J Magn Reson 142:331–340. doi:10.1006/jmre.1999.1944

    PubMed  CAS  Google Scholar 

  • Parak F, Frolov EN, Kononenko AA, Mössbauer RL, Goldanskii VI, Rubin AB (1980) Evidence for a correlation between the photoinduced electron transfer and dynamic properties of the chromatophore membranes from Rhodospirillum rubrum. FEBS Lett 117:368–372. doi:10.1016/0014-5793(80)80982-3

    PubMed  CAS  Google Scholar 

  • Paschedag L, van Tol J, Wyder P (1995) High-frequency electron-nuclear double-resonance at 239 GHz using a far-infrared laser source. Rev Sci Instrum 66:5098–5099. doi:10.1063/1.1146136

    CAS  Google Scholar 

  • Pilbrow JR (1990) Transition ion electron paramagnetic resonance. Clarendon, Oxford

    Google Scholar 

  • Plato M, Möbius K, Lubitz W (1991) Molecular orbital calculations on chlorophyll radical ions. In: Scheer H (ed) Chlorophylls. CRC Press, Boca Raton, FL, pp 1015–1046

    Google Scholar 

  • Polyhach Y, Godt A, Bauer C, Jeschke G (2007) Spin pair geometry revealed by high-field DEER in the presence of conformational distributions. J Magn Reson 185:118–129. doi:10.1016/j.jmr.2006.11.012

    PubMed  CAS  Google Scholar 

  • Poole CP (1983) Electron spin resonance. Wiley, New York

    Google Scholar 

  • Prisner TF (1997) Pulsed high-frequency/high-field EPR. In: Warren W (ed) Advances in magnetic and optical resonance, vol 20. Academic, New York, pp 245–299

    Google Scholar 

  • Prisner TF (2004) Pulsed high-frequency EPR. In: Grinberg O, Berliner LJ (eds) Very high frequency (VHF) ESR/EPR, vol 22. Kluwer/Plenum Publishers, New York, pp 249–277

    Google Scholar 

  • Prisner TF, Un S, Griffin RG (1992) Pulsed ESR at 140 GHz. Isr J Chem 32:357–363

    CAS  Google Scholar 

  • Prisner TF, Rohrer M, Möbius K (1994) Pulsed 95-GHz, high-field EPR heterodyne spectrometer with high spectral and time resolution. Appl Magn Reson 7:167–183

    CAS  Google Scholar 

  • Prisner TF, van der Est A, Bittl R, Lubitz W, Stehlik D, Möbius K (1995) Time-Resolved W-Band (95 GHz) EPR spectroscopy of Zn-substituted reaction centers of Rhodobacter sphaeroides R-26. Chem Phys 194:361–370. doi:10.1016/0301-0104(95)00016-H

    CAS  Google Scholar 

  • Prisner T, Rohrer M, MacMillan F (2001) Pulsed EPR spectroscopy: biological applications. Annu Rev Phys Chem 52:279–313. doi:10.1146/annurev.physchem.52.1.279

    PubMed  CAS  Google Scholar 

  • Raitsimring AM, Salikhov KM (1985) Electron spin echo method as used to analyze the spatial distribution of paramagnetic centers. Bull Magn Reson 7:184–217

    CAS  Google Scholar 

  • Rautter J, Lendzian F, Schulz C, Fetsch A, Kuhn M, Lin X, Williams JC, Allen JP, Lubitz W (1995) ENDOR studies of the primary donor cation radical in mutant reaction centers of Rhodobacter sphaeroides with altered hydrogen-bond interactions. Biochemistry 34:8130–8143. doi:10.1021/bi00025a020

    PubMed  CAS  Google Scholar 

  • Reijerse EJ, van Dam PJ, Klaassen AAK, Hagen WR, van Bentum PJM, Smith GM (1998) Concepts in high-frequency EPR—applications to bio-inorganic systems. Appl Magn Reson 14:153–167

    CAS  Google Scholar 

  • Reijerse E, Schmidt PP, Klihm G, Lubitz W (2007) A CW and pulse EPR spectrometer operating at 122 and 244 GHz using a quasi-optical bridge and a cryogen-free 12 T superconducting magnet. Appl Magn Reson 31:611–626

    CAS  Google Scholar 

  • Riedi PC (2006) Progress in high-field EPR of inorganic materials. In: Gilbert BC, Davies MJ, Murphy DM (eds) Electron paramagnetic resonance, vol 20. Royal Society of Chemistry, Cambridge, pp 245–269

    Google Scholar 

  • Riedi PC, Smith GM (2002) Progress in high-field EPR. In: Gilbert BC, Davies MJ, Murphy DM (eds) Electron paramagnetic resonance, vol 18. Royal Society of Chemistry, Cambridge, pp 254–303

    Google Scholar 

  • Riedi PC, Smith GM (2004) Progress in high field EPR: inorganic materials. In: Gilbert BC, Davies MJ, Murphy DM (eds) Electron paramagnetic resonance, vol 19. Royal Society of Chemistry, Cambridge, pp 338–373

    Google Scholar 

  • Rinard GA, Eaton SS, Eaton GR, Poole CP, Farach HA (1999) Sensitivity in EPR measurements. In: Poole CP, Farach HA (eds) Handbook of electron spin resonance, vol 2. Springer, Berlin, pp 1–23

    Google Scholar 

  • Rohrer M, Plato M, MacMillan F, Grishin Y, Lubitz W, Möbius K (1995) Orientation-selected 95 GHz high-field ENDOR spectroscopy of randomly oriented plastoquinone anion-radicals. J Magn Reson A 116:59–66. doi:10.1006/jmra.1995.1189

    CAS  Google Scholar 

  • Rohrer M, Gast P, Möbius K, Prisner TF (1996) Anisotropic motion of semiquinones in photosynthetic reaction centers of Rhodobacter sphaeroides R26 and in frozen isopropanol solution as measured by pulsed high-field EPR at 95 GHz. Chem Phys Lett 259:523–530. doi:10.1016/0009-2614(96)00822-6

    CAS  Google Scholar 

  • Rohrer M, Krzystek J, Williams V, Brunel LC (1999) Fabry-Perot resonator for high-field multi-frequency ESR at millimetre and submillimetre wavelengths. Meas Sci Technol 10:275–284. doi:10.1088/0957-0233/10/4/003

    CAS  Google Scholar 

  • Salikhov KM, Dzuba SA, Raitsimring AM (1981) The theory of electron spin-echo signal decay resulting from dipole-dipole interactions between paramagnetic centers in solids. J Magn Reson 42:255–276

    CAS  Google Scholar 

  • Savitsky A, Dubinskii AA, Flores M, Lubitz W, Möbius K (2007) Orientation-resolving pulsed electron dipolar high-field EPR spectroscopy on disordered solids: I. Structure of spin-correlated radical pairs in bacterial photosynthetic reaction centers. J Phys Chem B 111:6245–6262. doi:10.1021/jp070016c

    PubMed  CAS  Google Scholar 

  • Savitsky A, Dubinskii AA, Plato M, Grishin YA, Zimmermann H, Möbius K (2008) High-field EPR and ESEEM investigation of the nitrogen quadrupole interaction of nitroxide spin labels in disordered solids: Towards differentiation between polarity and proticity matrix effects on protein function. J Phys Chem B 112:9079–9090. doi:10.1021/jp711640p

    PubMed  CAS  Google Scholar 

  • Saxena S, Freed JH (1997) Two dimensional electron spin resonance and slow motions. J Phys Chem A 101:7998–8008. doi:10.1021/jp9717047

    CAS  Google Scholar 

  • Schiemann O, Prisner TF (2007) Long-range distance determinations in biomacromolecules by EPR spectroscopy. Q Rev Biophys 40:1–53. doi:10.1017/S003358350700460X

    PubMed  CAS  Google Scholar 

  • Schmalbein D, Maresch GG, Kamlowski A, Höfer P (1999) The Bruker high-frequency-EPR system. Appl Magn Reson 16:185–205

    CAS  Google Scholar 

  • Schnegg A, Fuhs M, Rohrer M, Lubitz W, Prisner TF, Möbius K (2002) Molecular dynamics of Q −•A and Q −•B in photosynthetic bacterial reaction centers studied by pulsed high-field EPR at 95 GHz. J Phys Chem B 106:9454–9462. doi:10.1021/jp0203907

    CAS  Google Scholar 

  • Schnegg A, Dubinskii AA, Fuchs MR, Grishin YA, Kirilina EP, Lubitz W, Plato M, Savitsky A, Möbius K (2007) High-field EPR, ENDOR and ELDOR on bacterial photosynthetic reaction centers. Appl Magn Reson 31:59–98

    CAS  Google Scholar 

  • Schweiger A, Jeschke G (2001) Principles of pulse electron paramagnetic resonance. Oxford University Press, Oxford

    Google Scholar 

  • Slichter CP (1963) Principles of magnetic resonance. Harper & Row, New York

    Google Scholar 

  • Smith GM, Riedi PC (2000) Progress in high field EPR. In: Atherton NM, Davies MJ, Gilbert BC (eds) Electron paramagnetic resonance, vol 17. Royal Society of Chemistry, Cambridge, pp 164–204

    Google Scholar 

  • Smith GM, Lesurf JCG, Mitchell RH, Riedi PC (1998) Quasi-optical cw mm-wave electron spin resonance spectrometer. Rev Sci Instrum 69:3924–3937. doi:10.1063/1.1149200

    CAS  Google Scholar 

  • Stehlik D, Möbius K (1997) New EPR methods for investigating photoprocesses with paramagnetic intermediates. Annu Rev Phys Chem 48:745–784. doi:10.1146/annurev.physchem.48.1.745

    PubMed  CAS  Google Scholar 

  • Stowell MHB, McPhillips TM, Rees DC, Soltis SM, Abresch E, Feher G (1997) Light-induced structural changes in photosynthetic reaction center: implications for mechanism of electron-proton transfer. Science 276:812–816. doi:10.1126/science.276.5313.812

    PubMed  CAS  Google Scholar 

  • Tarasov VF, Shakurov GS (1991) Submillimetre EPR spectrometer. Appl Magn Reson 2:571–576

    CAS  Google Scholar 

  • Tatsukawa T, Maeda T, Sasai H, Idehara T, Mekata I, Saito T, Kanemaki T (1995) ESR spectrometer with a wide frequency-range using a gyrotron as a radiation power source. Int J Infrared Milli Waves 16:293–305. doi:10.1007/BF02085864

    CAS  Google Scholar 

  • Thomann H, Dalton LR, Dalton LA (1984) Biological applications of time domain ESR. In: Berliner LJ (ed) Biological magnetic resonance, vol 6. Plenum, New York, pp 143–186

    Google Scholar 

  • Thurnauer MC, Poluektov OG, Kothe G (2004) Time-resolved high-frequency and multifrequency EPR studies of spin-correlated radical pairs in photosynthetic reaction center proteins. In: Grinberg O, Berliner LJ (eds) Very high frequency (VHF) ESR/EPR, biological magnetic resonance, vol 22. Kluwer/Plenum Publishers, New York, pp 166–206

    Google Scholar 

  • Tipikin DS, Lazarev GG, Lebedev YS (1993) Mechanochemical generation of stable radical pairs. Zh Fiz Khim 67:176–179

    CAS  Google Scholar 

  • van der Brink JS, Spoyalov AP, Gast P, van Liemt WBS, Raap J, Lugtenburg J, Hoff AJ (1994) Asymmetric binding of the primary acceptor quinone in reaction centers of the photosynthetic bacterium Rhodobacter sphaeroides R26, probed with Q-band (35 GHz) EPR spectroscopy. FEBS Lett 353:273–276. doi:10.1016/0014-5793(94)01047-1

    PubMed  Google Scholar 

  • van Willigen H, Levstein PR, Ebersole MH (1993) Application of fourier-transform electron-paramagnetic resonance in the study of photochemical-reactions. Chem Rev 93:173–197. doi:10.1021/cr00017a009

    Google Scholar 

  • Wang W, Belford RL, Clarkson RB, Davis PH, Forrer J, Nilges MJ, Timken MD, Walczak T, Thurnauer MC, Norris JR, Morris AL, Zhang Y (1994) Very high-frequency EPR-94 GHz instrument and applications to primary reaction centers from photosynthetic red bacteria and to other disordered systems. Appl Magn Reson 6:195–215

    Google Scholar 

  • Weber S (2000) Recent EPR studies on the bacterial photosynthetic reaction centre. In: Atherton NM, Davies MJ, Gilbert BC (eds) Electron paramagnetic resonance, vol 17. Royal Society of Chemistry, Cambridge, pp 43–77

    Google Scholar 

  • Weber RT, Disselhorst JAJM, Prevo LJ, Schmidt J, Wenckebach WT (1989) Electron spin-echo spectroscopy at 95 GHz. J Magn Reson 81:129–144

    CAS  Google Scholar 

  • Weber S, Fuhs M, Hofbauer W, Lubitz W, Möbius K (1998) Free University Berlin, unpublished results

Download references

Acknowledgments

It is a pleasure to thank all co-workers and cooperation partners for their contributions to the work described. We gratefully acknowledge essential encouragement and funding of interdisciplinary cooperative research by the Deutsche Forschungsgemeinschaft (SFB 337, SFB 498, III P5-MO 132/14-1, SPP 1051, MO 132/19-2), the Volkswagenstiftung (I/70 382, I/73 145) and the European Union (HCM, TMR, INTAS, COST P15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Möbius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savitsky, A., Möbius, K. High-field EPR. Photosynth Res 102, 311–333 (2009). https://doi.org/10.1007/s11120-009-9432-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-009-9432-4

Keywords

Navigation