Skip to main content
Log in

Development of Very-Low-Temperature Millimeter-Wave Electron-Spin-Resonance Measurement System

  • Original Article
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

We report the development of a millimeter-wave electron-spin-resonance (ESR) measurement system at the University of Fukui using a 3He/4He dilution refrigerator to reach temperatures below 1 K. The system operates in the frequency range of 125–130 GHz, with a homodyne detection. A nuclear-magnetic-resonance (NMR) measurement system was also developed in this system as the extension for millimeter-wave ESR/NMR double magnetic-resonance (DoMR) experiments. Several types of Fabry–Pérot-type resonators (FPR) have been developed: A piezo actuator attached to an FPR enables an electric tuning of cavity frequency. A flat mirror of an FPR has been fabricated using a gold thin film aiming for DoMR. ESR signal was measured down to 0.09 K. Results of ESR measurements of an organic radical crystal and phosphorous-doped silicon are presented. The NMR signal from 1H contained in the resonator is also detected successfully as a test for DoMR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.S. Alger, Electron Paramagnetic Resonance: Techniques and Applications, 2nd edn. (Wiley, New York, 1968)

    Google Scholar 

  2. C.P. Poole Jr., Electron Spin Resonance, 2nd edn. (Dover Publications Inc., New York, 1983)

    Google Scholar 

  3. C.P. Slichter, Principles of Magnetic Resonance with Example from Solid State Physics (Harper&Row Publications Inc., New York, 1963)

    Google Scholar 

  4. B. Cowan, Nuclear Magnetic Resonance and Relaxation (Cambridge University Press, Cambridge, 1997)

    Book  Google Scholar 

  5. L. Balents, Nature 464, 11 (2010)

    Article  Google Scholar 

  6. H. Okura, K. Ishida, Y. Kawasaki, Y. Kitaoka, Y. Yamamoto, Y. Miyako, T. Fukuhara, K. Maezawa, Physica. B 281–282, 61 (2000)

    Article  Google Scholar 

  7. Y. Fujii, T. Goto, K. Awaga, T. Okuno, Y. Sasaki, T. Mizusaki, J. Magn. Magn. Mater. 177–181, 991 (1998)

    Article  Google Scholar 

  8. T. Itou, A. Oyamada, S. Maegawa, R. Kato, Nat. Phys. 6, 673 (2010)

    Article  Google Scholar 

  9. M. Jeong, H. Mayaffre, C. Berthier, D. Schmidiger, A. Zheludev, M. Horvatić, Phys. Rev. Lett. 118, 167206 (2017)

    Article  ADS  Google Scholar 

  10. A. Koda, W. Higemoto, R. Kadono, K. Ishida, Y. Kitaoka, C. Geibel, F. Steglich, Physica. B 281–282, 16 (2001)

    Google Scholar 

  11. F. Xiao, J.S. Möller, T. Lancaster, R.C. Williams, F.L. Pratt, S.J. Blundell, D. Ceresoli, A.M. Barton, J.L. Manson, Phys. Rev. B 91, 144417 (2015)

    Article  ADS  Google Scholar 

  12. R.N. Ruby, H. Benoit, P.L. Scott, C.D. Jeferies, Bull. Am. Phys. Soc. Series II 6, 512 (1962)

    Google Scholar 

  13. V.B. Fedorov, Cryogenics 5, 911 (1965)

    Article  Google Scholar 

  14. K. Oshima, K. Okuda, M. Date, J. Phys. Soc. Jpn. 41, 475 (1976)

    Article  ADS  Google Scholar 

  15. K. Oshima, K. Okuda, M. Date, J. Phys. Soc. Jpn. 44, 757 (1978)

    Article  ADS  Google Scholar 

  16. K. Koyama, M. Yoshida, T. Sakon, D.X. Li, T. Suzuki, M. Motokawa, J. Phys. Soc. Jpn. 69, 3425 (2000)

    Article  ADS  Google Scholar 

  17. M. Mola, S. Hill, P. Goy, M. Gross, Rev. Sci. Instrum. 71, 186 (2000)

    Article  ADS  Google Scholar 

  18. T. Sakon, H. Nojiri, K. Koyama, T. Asano, Y. Ajiro, M. Motokawa, J. Phys. Soc. Jpn. 72, 140 (2003)

    Article  ADS  Google Scholar 

  19. S.A. Vasiliyev, J. Järvinen, E. Tjukanoff, A. Kharitonov, S. Jaakkola, Rev. Sci. Instrum. 75, 94 (2004)

    Article  ADS  Google Scholar 

  20. M. Hagiwara, T. Kashiwagi, H. Yashiro, T. Umeno, T. Ito, T. Sano, J. Phys: Conf. Ser. 150, 012015 (2009)

    Google Scholar 

  21. S. Sheludiakov, J. Ahokas, O. Vainio, J. Järvinen, D. Zvezdov, S. Vasiliev, V.V. Khmelenko, S. Mao, D.M. Lee, Rev. Sci. Instrum. 85, 053902 (2014)

    Article  ADS  Google Scholar 

  22. J. Järvinen, J. Ahokas, S. Sheludyakov, O. Vainio, L. Lehtonen, S. Vasiliev, D. Zvezdov, Y. Fujii, S. Mitsudo, T. Mizusaki, M. Gwak, S.-G. Lee, S. Lee, L. Vlasenko, Phys. Rev. B 90, 214401 (2014)

    Article  ADS  Google Scholar 

  23. C.A. McDowell, A. Naito, J. Magn. Reson. 45, 205 (1981)

    ADS  Google Scholar 

  24. C.A. McDowell, A. Naito, D.L. Sastry, Y.U. Cui, K. Sha, S.X. Yu, J. Mol. Struct. 195, 361 (1989)

    Article  ADS  Google Scholar 

  25. B. Epel, A. Pöppl, P. Manikandan, S. Vega, D. Goldfarb, J. Magn. Reson. 148, 388 (2001)

    Article  ADS  Google Scholar 

  26. G.W. Morley, L.C. Brunel, J.V. Tol, Rev. Sci. Instrum. 79, 064703 (2008)

    Article  ADS  Google Scholar 

  27. J.H. Ardenkjæ-Larsen, B. Fridlund, A. Gram, G. Hansson, L. Hansson, M.H. Lerche, R. Servin, M. Thaning, K. Golman, Proc. Natl. Acad. Sci. USA 100, 18 (2003)

    Google Scholar 

  28. K.R. Thurber, W.M. Yau, R. Tycko, J. Magn. Reson. 204, 303 (2010)

    Article  ADS  Google Scholar 

  29. J. Leggett, R. Hunter, J. Granwehr, R. Panek, A.J. Perez-Linde, A.J. Horsewill, J. McMaster, G. Smith, W. Köckenberger, Phys. Chem. Chem. Phys. 12, 5883 (2010)

    Article  Google Scholar 

  30. Y. Matsuki, H. Takahashi, K. Ueda, T. Idehara, I. Ogawa, M. Toda, H. Akutsu, T. Fujiwara, Phys. Chem. Chem. Phys. 12, 5799 (2010)

    Article  Google Scholar 

  31. L. Lumata, M. Merritt, C. Khemtong, S.J. Ratnakar, V.J. Tol, L. Yu, L. Song, Z. Kovacs, RSC Adv. 2, 12812 (2012)

    Article  Google Scholar 

  32. A.W. Overhauser, Phys. Rev. 92, 411 (1953)

    Article  ADS  Google Scholar 

  33. A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961)

    Google Scholar 

  34. B.E. Kane, Nature 393, 133 (1998)

    Article  ADS  Google Scholar 

  35. Y. Fujii, S. Mitsudo, K. Morimoto, T. Mizusaki, M. Gwak, S.G. Lee, A. Fukuda, A. Matsubara, T. Ueno, S. Lee, J. Phys: Conf. Ser. 568, 042005 (2014)

    Google Scholar 

  36. Y. Ishikawa, K. Ohya, Y. Fujii, Y. Koizumi, S. Miura, S. Mistudo, A. Fukuda, T. Asano, T. Mizusaki, A. Matsubara, H. Kikuchi, H. Yamamori, J. Infra. Millim. THz Waves 39, 288 (2018)

    Article  Google Scholar 

  37. Y. Ishikawa, K. Ohya, Y. Fujii, A. Fukuda, S. Miura, S. Mitsudo, H. Yamamori, H. Kikuchi, J. Infra. Millim. THz Waves 39, 387 (2018)

    Article  Google Scholar 

  38. S.A. Vasilyev, A.Ya. Katunin, A.I. Safonov, A.V. Frolov, E. Tjukanov, Appl. Magn. Reson. 3, 1061 (1992)

    Article  Google Scholar 

  39. A. Fukuda, H. Takenaka, T. Mizusaki, J. Low Temp. Phys. 121, 737 (2000)

    Article  ADS  Google Scholar 

  40. A. Fukuda, H. Takenaka, T. Ohmi, T. Mizusaki, J. Low Temp. Phys. 126, 127 (2001)

    Article  ADS  Google Scholar 

  41. H. Kogelnik, T. Li, Proc. IEEE 54, 10 (1966)

    Article  Google Scholar 

  42. G. Feher, Phys. Rev. 114, 1219 (1959)

    Article  ADS  Google Scholar 

  43. S. Gonda, Preparation and Evaluation of Thin Film and Application Technique Handbook (in Japanese) (Fuji-Technosystem Co., Ltd., Tokyo, 1984)

    Google Scholar 

  44. R.A. Serway, Principles of Physics, 2nd edn., (Saunders College Pub, Fort Worth. 1998), p. 602 (ISBN: 0-03-020457-7)

  45. S. Miura, K. Ohya, Y. Ishikawa, Y. Fujii, H. Kikuchi, A. Fukuda, S. Mitsudo, M. Toda, in Abstracts of the 56th Annual Meetings of the Society of Electron Spin Science and Technology (SEST2017) (Tokyo, Japan, 2-4 November 2017) Paper PS67

  46. B.W. Statt, W.N. Hardy, A.J. Berlinsky, E. Klein, J. Low Temp. Phys. 61, 471 (1985)

    Article  ADS  Google Scholar 

  47. A.M. Prokhorov, V.B. Fedorov, Soviet Phys. JETP 16, 1489 (1963)

    ADS  Google Scholar 

  48. T. Fujito, Bull. Chem. Soc. Jpn. 54, 3110 (1981)

    Article  Google Scholar 

  49. J. Krzystek, A. Sienkiewicz, L. Pardi, L.C. Brunel, J. Magn. Reson. 125, 207 (1997)

    Article  ADS  Google Scholar 

  50. D. Žilić, D. Pajić, M. Jurić, K. Molčanov, B. Rakvin, P. Planinić, K. Zadro, J. Magn. Reson. 207, 34 (2010)

    Article  ADS  Google Scholar 

  51. W. Voesch, M. Thiemann, D. Bothner, M. Dressel, M. Scheffler, Phys. Procedia 75, 503 (2015)

    Article  ADS  Google Scholar 

  52. G.B. Teitel’baum, E.G. Kharakhash’yan, S.Ya. Khlebnikov, A.G. Zenin, JETP Lett. 34, 555 (1981)

    ADS  Google Scholar 

  53. T.F. Rosenbaum, R.F. Milligan, M.A. Paalanen, G.A. Thomas, R.N. Bhatt, W. Lin, Phys. Rev. B 27, 7509 (1983)

    Article  ADS  Google Scholar 

  54. G. Feher, R.C. Fletcher, E.A. Gere, Phys. Rev. 100, 1784 (1955)

    Article  ADS  Google Scholar 

  55. M. Date, Electron Spin Resonance (in Japanese) (Baifukan, Tokyo, 1978)

    Google Scholar 

Download references

Acknowledgements

We are very grateful to Dr. S. Vasiliev for his large efforts on the construction of the ESR system in the DR and his useful advice on the measurements. We appreciate the support of Prof. Soonchil Lee (Department of Physics, Korea Advanced Institute of Science and Technology) for providing the Si:P sample. We thank Prof. S. Yonezawa, Prof. Y. Hasegawa, and Dr. Y. Arata (Headquarters for Innovative Society–Academia Cooperation, University of Fukui) for their support on the use of the fluorescent X-ray measurement system, and KIYOKAWA Plating Industry Co., Ltd., for providing us with a standard gold thin film for the fluorescent X-ray measurements. This study is partly supported by JSPS KAKENHI Grant Numbers 17K05514 and 26400331, and Cooperative Research Program of the Research Center for Development of Far-Infrared Region, University of Fukui (No. H27FIRDM011E, H28FIRDM024A, and H29FIRDM015B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Fujii.

Appendix A: ESR Lineshape for the Homodyne System

Appendix A: ESR Lineshape for the Homodyne System

The calculation procedure for the magnetic-resonance lineshape discussed in Sect. 4 is presented below.

A resonant cavity is often expressed in terms of the microwave analog of a series RLC-tuned circuit [2]. Figure 9 shows an equivalent circuit. The resonant angular frequency \(\omega_{0}\) and unloaded quality factor \(Q_{0}\) are expressed as follows:

$$\omega_{0} = \frac{1}{{\sqrt {LC} }} ,$$
(3)
$$Q_{0} = \frac{1}{R}\sqrt {\frac{L}{C}} ,$$
(4)

where R, L, and C are the resistance, inductance, and capacitance, respectively. The impedance of the circuit is as follows:

Fig. 9
figure 9

LCR circuit equivalent to the FPR coupled with the oscillator through a waveguide

$$Z = R + i\left( {\omega L - \frac{1}{\omega C}} \right) .$$
(5)

For a reflection cavity, such as our FPR, a waveguide with an impedance Z0 is coupled to the cavity with a coupling coefficient (or coupling parameter) β:

$$\beta = \frac{{Z_{0} }}{{n^{2} R}} .$$
(6)

The impedance from the waveguide \(Z_{\text{L}}\) is:

$$Z_{\text{L}} = n^{2} Z.$$
(7)

We measure the loaded quality factor \(Q_{\text{L}}\) from the waveguide:

$$Q_{\text{L}} = \frac{{Q_{0} }}{1 + \beta } .$$
(8)

If the cavity is perfectly coupled or matched to the waveguide, then β = 1 and \(Q_{\text{L}} = Q_{0} /2.\).

Furthermore, we consider the case when the cavity contains a magnetic sample with a magnetic susceptibility \(\chi = \chi^{\prime} - i\chi^{\prime\prime}\). The effect of the electric permeability is assumed to be negligible. The parameters L, R, Z, and β are expressed as follows:

$$L^{*} = L\left( {1 + q \chi^{\prime}} \right) ,$$
(9)
$$R^{*} = R + q\omega L\chi^{\prime\prime} = R\left( {1 + qQ_{0} \frac{\omega }{{\omega_{0} }}\chi^{\prime\prime}} \right) ,$$
(10)
$$Z^{*} = R^{*} + i\left( {\omega L^{*} - \frac{1}{\omega C}} \right) ,$$
(11)
$$\beta^{*} = \frac{{Z_{0} }}{{n^{2} R^{*} }} ,$$
(12)

where q is the filling factor of the sample. The reflection coefficient without the sample Γ(ω) is:

$$\varGamma \left( \omega \right) = \frac{{Z_{L } - Z_{0} }}{{Z_{L} + Z_{0} }} = \frac{{1 - \beta + iQ_{0} \left( {\frac{\omega }{{\omega_{0} }} - \frac{{\omega_{0} }}{\omega }} \right)}}{{1 + \beta + iQ_{0} \left( {\frac{\omega }{{\omega_{0} }} - \frac{{\omega_{0} }}{\omega }} \right)}} .$$
(13)

The reflection coefficient with the sample Γ*(ω) is obtained in the same manner:

$$\varGamma^{*} \left( \omega \right) = \frac{{1 - \beta^{*} + iQ_{0}^{*} \left( {\frac{\omega }{{\omega_{0}^{*} }} - \frac{{\omega_{0}^{*} }}{\omega }} \right)}}{{1 + \beta^{*} + iQ_{0}^{*} \left( {\frac{\omega }{{\omega_{0}^{*} }} - \frac{{\omega_{0}^{*} }}{\omega }} \right)}} ,$$
(14)

where,

$$\omega_{0}^{*} = \frac{{\omega_{0} }}{{\sqrt {1 + q\chi^{\prime}} }} ,$$
(15)
$$Q_{0}^{*} = Q_{0} \frac{{\sqrt {1 + q\chi^{\prime} } }}{{1 + qQ_{0} \frac{\omega }{{\omega_{0} }}\chi^{\prime\prime}}} ,$$
(16)
$$\beta^{*} = \frac{\beta }{{1 + qQ_{0} \frac{\omega }{{\omega_{0} }}\chi^{\prime\prime}}} .$$
(17)

We can rewrite Eq. (14) as:

$$\varGamma^{*} \left( \omega \right) = \frac{{1 - \beta + qQ_{0} \frac{\omega }{{\omega_{0} }}\chi^{\prime\prime} + iQ_{0} \left( {\frac{\omega }{{\omega_{0} }}\left( {1 + q\chi^{\prime} } \right) - \frac{{\omega_{0} }}{\omega }} \right)}}{{1 + \beta + qQ_{0} \frac{\omega }{{\omega_{0} }}\chi^{\prime\prime} + iQ_{0} \left( {\frac{\omega }{{\omega_{0} }}\left( {1 + q\chi^{\prime} } \right) - \frac{{\omega_{0} }}{\omega }} \right)}} .$$
(18)

We define the reflection coefficient for an empty cavity at \(\omega = \omega_{0}\) as:

$$\varGamma_{0} = \frac{1 - \beta }{1 + \beta } ,$$
(19)

and define γ  = \(qQ_{\text{L}} \chi\) (\(\gamma^{\prime}\) = \(qQ_{\text{L}} \chi^{\prime}\), \(\gamma^{\prime\prime}\) = \(qQ_{\text{L}} \chi^{\prime\prime}\)); we obtain:

$$\varGamma^{*} \left( \omega \right) = \frac{{\varGamma_{0} + \gamma^{\prime\prime}\frac{\omega }{{\omega_{0} }} + iQ_{L} \left( {\frac{\omega }{{\omega_{0} }} - \frac{{\omega_{0} }}{\omega }} \right) + i\left( {\frac{\omega }{{\omega_{0} }}} \right)\gamma^{\prime}}}{{1 + \gamma^{\prime\prime}\frac{\omega }{{\omega_{0} }} + iQ_{L} \left( {\frac{\omega }{{\omega_{0} }} - \frac{{\omega_{0} }}{\omega }} \right) + i\left( {\frac{\omega }{{\omega_{0} }}} \right)\gamma^{\prime}}}.$$
(20)

For the resonance frequency (\(\omega_{0}\)):

$$\varGamma^{*} = \frac{{\varGamma_{0} + i\gamma }}{1 + i\gamma } .$$
(21)

The measured ESR signal is expressed by:

$$\delta = \frac{{\varGamma^{*} - \varGamma_{0} }}{{\varGamma_{0} }} .$$
(22)

It is well known that \(\chi ''\left( \omega \right)\) and \(\chi '\left( \omega \right)\) correspond to the absorption and dispersion lines of the magnetic resonance, respectively, related to each other by the Kramers–Kronig relation. Therefore, it is useful to express \(\delta\) in terms of γ:

$$\delta = \eta \left[ {\frac{{\gamma '' + \gamma ''^{2} + \gamma '^{2} + i\gamma '}}{{\left( {1 + \gamma ''} \right)^{2} + \gamma '^{2} }}} \right] ,$$
(23)

where:

$$\eta = \frac{2\beta }{1 - \beta } = 1 - \frac{1}{{\varGamma_{0} }} .$$
(24)

The real and imaginary parts of \(\delta\) contain both \(\chi ''\left( \omega \right)\) and \(\chi '\left( \omega \right)\); therefore, the observed ESR signals are not perfectly separated into absorption and dispersion signals. Nevertheless, it is known that the mixing becomes significant when the spin density is approximately larger than 3 × 1015 cm−3 [38]. As the spin density is sufficiently small for our measurements, we can observe almost pure dispersion and absorption signals as the real and imaginary parts of \(\delta\), respectively.

In the calculation shown in Sect. 4, we used a Lorentzian-like lineshape:

$$\chi^{\prime}\left( \omega \right) = \frac{{\chi_{0} \gamma_{\text{e}}^{2} H_{0}^{2} \left( {\gamma_{\text{e}}^{2} H_{0}^{2} - \omega^{2} } \right)}}{{\left( {\gamma_{\text{e}}^{2} H_{0}^{2} - \omega^{2} } \right)^{2} + 4\omega^{2} /T_{2}^{2} }} ,$$
(25)
$$\chi^{\prime\prime}\left( \omega \right) = \frac{{2\chi_{0} \gamma_{\text{e}}^{2} H_{0}^{2} \omega /T_{2} }}{{\left( {\gamma_{\text{e}}^{2} H_{0}^{2} - \omega^{2} } \right)^{2} + 4\omega^{2} /T_{2}^{2} }} ,$$
(26)

where \(\gamma_{\text{e}}\) is the gyromagnetic ratio of the electron, H0 is the applied field, and \(\chi_{0}\) is the uniform susceptibility. These equations are derived from the Bloch’s equations, without saturation and with a long spin–spin relaxation time T2 [55]. Slightly different equations are obtained in Refs. [4] and [33], though the obtained lineshape is very close to that corresponding to the above equations. The free parameters for the calculations shown in Fig. 4 are the relaxation rate 1/T2 revealing the width of the lineshape, QL determining the frequency dependence, and scaling factor including q and \(\chi_{0}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujii, Y., Ishikawa, Y., Ohya, K. et al. Development of Very-Low-Temperature Millimeter-Wave Electron-Spin-Resonance Measurement System. Appl Magn Reson 49, 783–801 (2018). https://doi.org/10.1007/s00723-018-1027-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-018-1027-9

Navigation