Skip to main content
Log in

Development of Millimeter Wave Fabry-Pérot Resonator for Simultaneous Electron-Spin and Nuclear Magnetic Resonance Measurement

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

We report a Fabry-Pérot resonator with spherical and flat mirrors to allow simultaneous electron-spin resonance (ESR) and nuclear magnetic resonance (NMR) measurements that could be used for double magnetic resonance (DoMR). In order to perform simultaneous ESR and NMR measurements, the flat mirror must reflect millimeter wavelength electromagnetic waves and the resonator must have a high Q value (Q > 3000) for ESR frequencies, while the mirror must simultaneously let NMR frequencies pass through. This requirement can be achieved by exploiting the difference of skin depth for the two frequencies, since skin depth is inversely proportional to the square root of the frequency. In consideration of the skin depth, the optimum conditions for conducting ESR and NMR using a gold thin film are explored by examining the relation between the Q value and the film thickness. A flat mirror with a gold thin film was fabricated by sputtering gold on an epoxy plate. We also installed a Helmholtz radio frequency coil for NMR and tested the system both at room and low temperatures with an optimally thick gold film. As a result, signals were obtained at 0.18 K for ESR and at 1.3 K for NMR. A flat-mirrored resonator with a thin gold film surface is an effective way to locate NMR coils closer to the sample being examined with DoMR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig.8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. R.S. Alger, Electron Paramagnetic resonance: Techniques and Applications, 2nd edn., (John Wiley & Sons Inc., Joboken, 1968)

    Google Scholar 

  2. C.P. Poole Jr, Electron spin resonance, 2nd edn., (Dover Publications Inc., New York, 1983)

    Google Scholar 

  3. C.P. Slichter, Principles of Magnetic Resonance with Example from Solid State Physics, (Harper&Row Publications Inc., New York, 1963)

    Google Scholar 

  4. B. Cowan, Nuclear Magnetic Resonance and Relaxation, (Cambridge University Press, Cambridge, 1997)

    Book  Google Scholar 

  5. J.H. Ardenkjæ-Larsen, B. Fridlund, A. Gram, G. Hansson, L. Hansson, M.H. Lerche, R. Servin, M. Thaning, K. Golman, PNAS, 100, 18 (2003), pp. 10158-10163, https://doi.org/10.1073/pnas.1733835100

  6. K.R. Thurber, W.M. Yau, R. Tycko, J. Magn. Reson., 204, (2010), pp. 303–313, https://doi.org/10.1016/j.jmr.2010.03.016

    Article  Google Scholar 

  7. J. Leggett, R. Hunter, J. Granwehr, R. Panek, A.J. Perez-Linde, A. J. Horsewill, J. McMaster, G. Smith, W. Köckenberger, Phys. Chem. Chem. Phys., 12, (2010), pp. 5883–5892, https://doi.org/10.1039/C002566F

  8. Y. Matsuki, H. Takahashi, K. Ueda, T. Idehara, I. Ogawa, M. Toda, H. Akutsu, T. Fujiwara, Phys. Chem. Chem. Phys., 12, (2010), pp. 5799–5803, https://doi.org/10.1039/C002268C

    Article  Google Scholar 

  9. L. Lumata, M. Merritt, C. Khemtong, S.J. Ratnakar, V.J. Tol, L. Yu, L. Song, Z. Kovacs, RSC Adv., 2, (2012), pp. 12812–12817, https://doi.org/10.1039/C2RA21853D

    Article  Google Scholar 

  10. A.W. Overhauser, Phys. Rev., 92, (1953), pp. 411–415

    Article  Google Scholar 

  11. C.A. McDowell, A. Naito, J. Magn. Reson, 45, 2, (1981), pp. 205–222, https://doi.org/10.1016/0022-2364(81)90117-7

    Google Scholar 

  12. C.A. McDowell, A. Naito, D.L. Sastry, Y.U. Cui, K. Sha, S.X. Yu, Journal of Molecular Structure, 195, (1989), pp. 361–381, https://doi.org/10.1016/0022-2860(89)80183-8

    Article  Google Scholar 

  13. B. Epel, A. Pöppl, P. Manikandan, S. Vega, D. Goldfarb, J. Magn. Reson., 148, 2, (2001), pp. 388–397, doi:https://doi.org/10.1006/jmre.2000.2261

  14. G.W. Morley, L.C. Brunel, J.V. Tol, Rev. Sci. Instrum., 79, 6, 064703, (2008), https://doi.org/10.1063/1.2937630

  15. A. Abragam, The principles of Nuclear Magnetism, (Clarendon Press, Oxford, 1961), ch.9–10

    Google Scholar 

  16. B. E. Kane, Nature 393, (1998), pp. 133–137, https://doi.org/10.1038/30156

    Article  Google Scholar 

  17. S.A. Vasiliyev, J. Järvinen, E. Tjukanoff, A. Kharitonov, S. Jaakkola, Rev. Sci. Instrum., 75, 1, (2004), pp. 94-98, https://doi.org/10.1063/1.1633006

  18. T. Sakon, H. Nojiri, K. Koyama, T. Asano, Y. Ajiro, M. Motokawa, J. Phys. Soc. Jpn., 72, (2003), pp. 140–144, https://doi.org/10.1143/JPSJS.72SB.140

    Article  Google Scholar 

  19. M. Hagiwara, T. Kashiwagi, H. Yashiro, T. Umeno, T. Ito, T. Sano, J. Phys.:Conf. Ser., 150, 012015, (2009), https://doi.org/10.1088/1742-6596/150/1/012015

    Google Scholar 

  20. Y. Fujii, T. Goto, K. Awaga, T. Okuno, Y. Sasaki, T. Mizusaki, J. Magn. Magn. Mater., 177-181, 991, (1998)

    Article  Google Scholar 

  21. T. Itou, A. Oyamada, S. Maegawa, R. Kato, Nature Physics 6, (2010), pp. 673–676, https://doi.org/10.1038/NPHYS1715

    Article  Google Scholar 

  22. S. Sheludiakov, J. Ahokas, O. Vainio, J. Järvinen, D. Zvezdov, S. Vasiliev, V.V. Khmelenko, S. Mao, D.M. Lee, Rev. Sci. Instrum., 85, 053902, (2014), https://doi.org/10.1063/1.4875985

    Article  Google Scholar 

  23. J. Järvinen, J. Ahokas, S. Sheludyakov, O. Vainio, L. Lehtonen, S. Vasiliev, D. Zvezdov, Y. Fujii, S. Mitsudo, T. Mizusaki, M. Gwak, SangGap Lee, Soonchil Lee, L. Vlasenko, Phys. Rev. B 90, 214401, (2014)

    Article  Google Scholar 

  24. H. Kogelnik, T. Li, Proc. IEEE, 54, 10, (1966)

    Article  Google Scholar 

  25. Y. Ishikawa, K. Ohya, S. Miura, Y. Fujii, S. Mistudo, T. Mizusaki, A. Fukuda, A. Matsubara,H. Kikuchi H. Yamamori, S. Lee, S. Vasiliev, J. Phys.: Conf. Ser., in press.

  26. S. Gonda, Preparation and Evaluation of Thin Film and Application Technique Handbook (in Japanese), (Fuji-Technosystem Co. Ltd., Tokyo, 1984)

    Google Scholar 

  27. R.A. Serway, Principles of Physics, 2nd edn, (Saunders College Pub, Fort Worth, Texas, 1998), pp. 602

  28. M. Shaham, J. Barak, U. El-Hanany, W.W. Warren Jr, Phys. Rev. B 22, 11, (1980), pp. 5400–5419

    Article  Google Scholar 

  29. T. F. Rosenbaum, R. F. Milligan, M. A. Paalanen, G. A. Thomas, R. N. Bhatt, W. Lin, Phys. Rev. B 27, 7509 (1983)

    Article  Google Scholar 

  30. Y. Fujii, S. Mitsudo, K. Morimoto, T. Mizusaki, M. Gwak, S. G. Lee, A. Fukuda, A. Matsubara, T. Ueno, S. Lee, J. Phys.:Conf. Ser., 568, 042005, (2014)

    Google Scholar 

Download references

Acknowledgements

The authors express sincere thanks to Dr. S. Vasiliev for his great effort on constructing ESR system on DR and giving advice on making FPR. We thank Dr. Akira Matsubara (Department of Physics, Kyoto University) for his help on constructing our ESR system on the DR, and Prof. Soonchil Lee (Department of Physics, Korea Advanced Institute of Science and Technology) for providing Si:P sample. We also appreciate Prof. S. Yonezawa, Prof. Y. Hasegawa, and Dr. Y. Arata (Headquarters for Innovative Society-Academia Cooperation, University of Fukui) for their support on using the fluorescent X-ray measurement system, and KIYOKAWA Plating Industry Co., Ltd. for giving a standard thin gold film for the fluorescent X-ray measurements. This work is partly supported by JSPS KAKENHI Grant Numbers 17K05514 and 26400331 and by the Cooperative Research Program of Research Center for Development of Far-Infrared Region, University of Fukui (No. H27FIRDM011E, H28FIRDM024A, H29FIRDM015B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuya Ishikawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishikawa, Y., Ohya, K., Fujii, Y. et al. Development of Millimeter Wave Fabry-Pérot Resonator for Simultaneous Electron-Spin and Nuclear Magnetic Resonance Measurement. J Infrared Milli Terahz Waves 39, 387–398 (2018). https://doi.org/10.1007/s10762-018-0464-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-018-0464-8

Keywords

Navigation