Skip to main content
Log in

Differing responses of zircon, chevkinite-(Ce), monazite-(Ce) and fergusonite-(Y) to hydrothermal alteration: Evidence from the Keivy alkaline province, Kola Peninsula, Russia

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

A quartzolite from the Rova occurrence, Keivy alkali granite province, Kola Peninsula, Russia, is used to examine the differing responses of certain rare-metal minerals during interaction with hydrothermal fluids. The minerals are two silicates [chevkinite-(Ce) and zircon], a phosphate [monazite-(Ce)] and an oxide [fergusonite-(Y)]. Textural evidence is taken to show that the dominant alteration mechanism was interface-coupled dissolution-reprecipitation. Zircon was the most pervasively altered, possibly by broadening of cleavage planes or fractures; the other minerals were altered mainly on their rims and along cracks. The importance of cracks in promoting fluid access is stressed. The compositional effects of the alteration of each phase are documented. The hydrothermal fluids carried few ligands capable of transporting significant amounts of rare-earth elements (REE), high field strength elements (HFSE) and actinides; alteration is inferred to have been promoted by mildly alkaline, Ca-bearing fluids. Expansion cracks emanating from fergusonite-(Y) are filled with unidentified material containing up to 35 wt% UO2 and 25 wt% REE2O3, indicating late-stage, short-distance mobility of these elements. Electron microprobe chemical dating of monazite yielded an age of 1665 ± 22 Ma, much younger than the formation age of the Keivy province (2.65–2.67 Ga) but comparable to that of the Svecofennian metamorphic event which affected the area (1.9–1.7 Ga) or during fluid-thermal activation of the region during rapakivi granite magmatism (1.66–1.56 Ga). Dates for altered monazite range from 2592 ± 244 Ma to 773 ± 88 Ma and reflect disturbance of the U-Th-Pb system during alteration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Anderson AJ, Wirth R, Thomas R (2008) The alteration of metamict zircon and its role in the remobilization of high-field-strength elements in the Georgeville granite, Nova Scotia. Scotia. Can Mineral 46:1–18

    Article  Google Scholar 

  • Bagiński B, Macdonald R, Dzierżanowski P, Zozulya D, Kartashov PM (2015) Hydrothermal alteration of chevkinite-group minerals: products and mechanisms. Part 1. Hydration of chevkinite-(Ce). Mineral Mag 79:1019–1037

    Article  Google Scholar 

  • Bagiński B, Zozulya D, Macdonald R, Kartashov PM, Dzierżanowski P (2016) Low-temperature hydrothermal alteration of a rare-metal rich quartz-epidote metasomatite from the El’ozero deposit, Kola Peninsula. Russia Eur J Mineral 28:789–910

    Article  Google Scholar 

  • Baltybayev SH, Levchenkov OA, Levsky LK (2009) Svecofenian belt of Fennoscandia: spatial and temporal correlation of early Proterozoic endogenic processes. Nauka, St Petersburg, pp. 328. (in Russian)

  • Bayanova TB (2004) The age of reference geological complexes of the Kola region and duration of magmatic processes. Nauka, St Petersburg, pp 174. (in Russian)

  • Bayanova TB, Voloshin AV (1999) U-Pb dating of zircon megacrysts (8 cm) from amazonite-rand-pegmatite of Mt. Ploskaya, Baltic shield. EUG-10 abstracts, Strasbourg, p 153

  • Bel’kov IV, Batieva ID, Vinogradova GV, Vinogradov AN (1988) Mineralization and fluid regime in the contact zones of alkali granite intrusions. Kola branch, USSR. Academy of Sciences, Apatity, pp 110. (in Russian)

  • Berger A, Gnos E, Janots E, Fernandez A, Giese J (2008) Formation and composition of rhabdophane, bastnäsite and hydrated thorium minerals during alteration: implications for geochronology and low-temperature processes. Chem Geol 254:238–248

    Article  Google Scholar 

  • Bosse V, Boulvais P, Gautier P, Tiepolo M, Ruffet G, Devidal JL, Cherneva Z, Gerdjikov I, Paquette JL (2009) Fluid-induced disturbance of the monazite Th-Pb chronometer: in situ dating and element mapping in pegmatites from the Rhodope (Greece, Bulgaria). Chem Geol 261:286–302

    Article  Google Scholar 

  • Broska I, Petrík I, Williams CT (2000) Coexisting monazite and allanite in peraluminous granitoids of the Tribeč Mountains, western Carpathians. Am Mineral 85:22–32

    Article  Google Scholar 

  • Budzyń B, Hetherington CJ, Williams MI, Jercinovic MJ, Michalik M (2010) Fluid- mineral interactions and constraints on monazite alteration during metamorphism. Mineral Mag 74:659–681

    Article  Google Scholar 

  • Budzyń B, Harlov DE, Williams ML, Jercinovic MJ (2011) Experimental determination of stability relations between monazite, fluorapatite, allanite, and REE-epidote as a function of pressure, temperature, and fluid composition. Am Mineral 96:1547–1567

    Article  Google Scholar 

  • Drysdall AR, Jackson NR, Ramsay CR, Hackett D (1984) Rare element mineralization related to Precambrian alkali granites in the Arabian shield. Econ Geol 79:1366–1377

    Article  Google Scholar 

  • Ercit TS (2005) Identification and alteration trends of granitic-pegmatite-hosted (Y,REE,U,Th)-(Nb,Ta,Ti) oxide minerals: a statistical approach. Can Mineral 43:1291–1303

    Article  Google Scholar 

  • Ervanne H (2004) Uranium oxidation states in allanite, fergusonite and monazite of pegmatites from Finland. N Jahr Mineral Mon 2004:289–301

    Article  Google Scholar 

  • Förster H-J (1998) The chemical composition of REE-Y-Th-U-rich accessory minerals in peraluminous granites of the Erzegebirge-Fichtelgebirge region, Germany, part 1: the monazite-(Ce)-brabantite solid solution series. Am Mineral 83:259–272

    Article  Google Scholar 

  • Geisler T, Rashwan AA, Rahn MKW, Poller U, Zwingmann H, Pidgeon RT, Schleicher H, Tomaschek F (2003a) Low-temperature hydrothermal alteration of natural metamict zircon from the Eastern Desert, Egypt. Mineral Mag 67:485–508

    Article  Google Scholar 

  • Geisler T, Trachenko K, Rios S, Dove MT, Salje EKH (2003b) Impact of self-irradiation damage on the aqueous durability of zircon (ZrSiO4): implications for its suitability as a nuclear waste form. J Phys Condens Matter 15:L597–L605

    Article  Google Scholar 

  • Gieré R, Williams CT, Wirth R, Ruschel K (2009) Metamict fergusonite-(Y) in a spessartine-bearing granitic pegmatite from Adamello, Italy. Chem Geol 261:333–345

    Article  Google Scholar 

  • Gorbatschev R, Bogdanova S (1993) Frontiers in the Baltic shield. In: Gorbatschev, R (ed) the Baltic shield. Spec Vol, Precambrian Res 64:3–21

    Article  Google Scholar 

  • Harlov DE, Hetherington CJ (2010) Partial high-grade alteration of monazite using alkali-bearing fluids: experiments and nature. Am Mineral 95:1105–1108

    Article  Google Scholar 

  • Harlov DE, Wirth R, Förster H-J (2005) An experimental study of dissolution- reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contrib Mineral Petrol 150:268–286

    Article  Google Scholar 

  • Harlov DE, Wirth R, Hetherington CJ (2007) The relative stability of monazite and huttonite at 300-900 °C and 200-1000 MPa: Metasomatism and the propagation of metastable mineral phases. Am Mineral 92:1652–1664

    Article  Google Scholar 

  • Harlov DE, Wirth R, Hetherington CJ (2011) Fluid-mediated partial alteration in monazite: the role of coupled dissolution-reprecipitation in element redistribution and mass transfer. Contrib Mineral Petrol 162:329–348

    Article  Google Scholar 

  • Hetherington CJ, Harlov DE (2008) Metasomatic thorite and uraninite inclusions in xenotime and monazite from granitic pegmatites, Hidra anorthosite massif, southwestern Norway: mechanics and fluid chemistry. Am Mineral 93:806–820

    Article  Google Scholar 

  • Hetherington CJ, Harlov DE, Budzyń B (2010) Experimental metasomatism of monazite and xenotime: mineral stability, REE mobility and fluid composition. Mineral Petrol 99:165–184

    Article  Google Scholar 

  • Jarosewich E, Boatner L (1991) Rare-earth element reference samples for electron microprobe analysis. Geostand Newslett 15:397–399

    Article  Google Scholar 

  • Jiang N (2006) Hydrothermal alteration of chevkinite-(Ce) in the Shuiquangou syenitic intrusion, northern China. Chem Geol 227:100–112

    Article  Google Scholar 

  • Johan Z, Johan V (2005) Accessory minerals of the Cínovec (Zinnwald) granite cupola, Czech Republic: indicators of petrogenetic evolution. Mineral Petrol 83:113–150

    Article  Google Scholar 

  • Kartashov PM (1994) Zr- and Nb-bearing varieties of chevkinite-(Ce) and their alteration products, first occurrence in Mongolia. Ninth IAGOD Symp (Beijing) 2:696–697

    Google Scholar 

  • Kartashov PM, Voloshin AV, Pakhomovsky YA (1993) On the zonal gadolinite from the alkaline granitic pegmatites of Haldzan-Buragtag (Mongolian Altai). Proc Russ mineral Soc 1993, Nr 3:65–79. (in Russian)

  • Lisowiec K, Budzyń B, Słaby E, Renno AD, Götze J (2013) Fluid-induced magmatic and post-magmatic zircon and monazite patterns in granitoid pluton and related rhyolitic bodies. Chem Erde 73:163–179

    Article  Google Scholar 

  • Lumpkin GR, Smith KL, Gieré R, Williams CT (2004) Geochemical behaviors of host phases for actinides and fission products in crystalline ceramic nuclear waste forms. In: Gieré R, Stille P (eds) energy, waste and the environment: a geochemical perspective: Geol Soc, London, Spec Pub 236:89–111

  • Lumpkin GR, Gao Y, Gieré R, Williams CT, Mariano AN, Geisler T (2014) The role of Th-U minerals in assessing the performances of nuclear waste forms. Mineral Mag 78:1071–1097

    Article  Google Scholar 

  • Lyalina LM, Zozulya DR, Savchenko YE, Tarasov MP, Selivanova EA, Tarasova E (2014) Fluorbritholite-(Y) and yttrialite-(Y) from silexites of the Keivy alkali granites, Kola Peninsula. Geol Ore Dep 56:589–602

    Article  Google Scholar 

  • Macdonald R, Belkin HE, Wall F, Bagiński B (2009) Compositional variation in the chevkinite group: new data from igneous and metamorphic rocks. Mineral Mag 73:777–796

    Article  Google Scholar 

  • Macdonald R, Bagiński B, Kartashov P, Zozulya D, Dzierżanowski P (2012) Chevkinite-group minerals from Russia and Mongolia: new compositional data from fenites, metasomatites and ore deposits. Mineral Mag 76:535–549

    Article  Google Scholar 

  • Macdonald R, Bagiński B, Kartashov PM, Zozulya D, Dzierżanowski P (2015a) Hydrothermal alteration of chevkinite-group minerals. Part 2. Metasomatite from the Keivy massif, Kola Peninsula, Russia. Mineral Mag 79:1039–1059

    Article  Google Scholar 

  • Macdonald R, Bagiński B, Kartashov PM, Zozulya D, Dzierżanowski P (2015b) Interaction of rare-metal minerals with hydrothermal fluids: evidence from quartz-epidote metasomatites of the Haldzan massif, Mongolian Altai. Can Mineral 53:1015–1034

    Article  Google Scholar 

  • Macdonald R, Bagiński B, Kartashov PM, Zozulya D, Dzierżanowski P, Jokubauskas P (2015c) Hydrothermal alteration of a chevkinite-group mineral to a bastnäsite-(Ce)-ilmenite-columbite-(Fe) assemblage: interaction with a F-, CO2-rich fluid. Mineral Petrol 109:659–678

    Article  Google Scholar 

  • Meldrum A, Wang LM, Ewing RC (1996) Ion-beam-induced amorphization of monazite. Nucl Instrum Methods B 116:220–224

    Article  Google Scholar 

  • Meldrum A, Boatner LA, Wang LM, Ewing RC (1997) Displacive radiation effects in the monazite- and zircon-structure orthophosphates. Phys Rev B56:13805–13814

    Article  Google Scholar 

  • Meldrum A, Boatner LA, Ewing RC (2000) A comparison of radiation effects in crystalline ABO4-type phosphates and silicates. Mineral Mag 64:185–194

    Article  Google Scholar 

  • Mitrofanov FP, Zozulya DR, Bayanova TB, Levkovich NV (2000) The world’s oldest anorogenic alkali granitic magmatism in the Keivy structure on the Baltic shield. Dokl Earth Sci 374:1145–1148

    Google Scholar 

  • Nasdala L, Kronz A, Wirth R, Váczi T, Pérez-Soba C, Willner A, Kennedy AK (2009) The phenomenon of deficient electron microprobe totals in radiation-damaged and altered zircon. Geochim Cosmochim Acta 73:1637–1650

    Article  Google Scholar 

  • Nasdala L, Hanchar JM, Rhede D, Kennedy AK, Váczi T (2010) Retention of uranium in complexly altered zircon: an example from Bancroft, Ontario. Chem Geol 269:290–300

    Article  Google Scholar 

  • Ondrejka M, Uher P, Putiš M, Broska I, Bačík P (2012) Two-stage breakdown of monazite by post-magmatic and metamorphic fluids: an example from the Veporic orthogneiss, western Carpathians, Slovakia. Lithos 142-143:245–255

    Article  Google Scholar 

  • Pérez-Soba C, Villaseca C, Gonzáles del Tánago J, Nasdala L (2007) The composition of zircon in the peraluminous Hercynian granites of the Spanish central system batholith. Can Mineral 45:509–527

    Article  Google Scholar 

  • Poitrasson F, Chenery S, Shepherd TJ (2000) Electron microprobe and LA-ICP-MS study of monazite hydrothermal alteration: implications for the U-Th-Pb geochronology of nuclear ceramics. Geochim Cosmochim Acta 64:3283–3297

    Article  Google Scholar 

  • Pouchou JL, Pichoir JF (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model ‘PAP’. In: Newbury H (ed) Electron probe quantitation. Plenum Press, New York, pp 31–75

    Chapter  Google Scholar 

  • Prol-Ledesma R-M, Melgarejo JC, Martin RF (2012) The el Muerto “NYF” granitic pegmatite, Oaxaca, Mexico, and its striking enrichment in allanite-(Ce) and monazite-(Ce). Can Mineral 50:1055–1076

    Article  Google Scholar 

  • Rämö OT, Haapala I (1995) One hundred years of Rapakivi granite. Mineral Petrol 52:129–185

    Article  Google Scholar 

  • Rasmussen B, Muhling JR (2007) Monazite begets monazite: evidence for dissolution of detrital monazite and reprecipitation of syntectonic monazite during low-grade regional metamorphism. Contrib Mineral Petrol 154:675–689

    Article  Google Scholar 

  • Ruschel K, Nasdala L, Rhede D, Wirth R, Lengauer CL, Libowitsky E (2010) Chemical alteration patterns in metamict fergusonite. Eur J Mineral 22:425–433

    Article  Google Scholar 

  • Seydoux-Guillaume A-M, Paquette JL, Wiedenbeck M, Montel JM, Heinrich W (2002) Experimental resetting of the U-Th-Pb system in monazite. Chem Geol 191:165–181

    Article  Google Scholar 

  • Seydoux-Guillaume A-M, Wirth R, Ingrin J (2007) Contrasting response of ThSiO4 and monazite to natural irradiation. Eur J Mineral 19:7–14

    Article  Google Scholar 

  • Seydoux-Guillaume A-M, Montel J-M, Bingen B, Bosse V, de Parseval P, Paquette J-L, Janots E, Wirth R (2012) Low-temperature alteration of monazite: fluid mediated coupled dissolution-precipitation, irradiation damage, and disturbance of the U-Pb and Th-Pb chronometers. Chem Geol 330-331:140–158

    Article  Google Scholar 

  • Skridlaite G, Bogdanova S, Taran L, Bagiński B (2014) Recurrent high grade metamorphism recording a 300 ma long Proterozoic crustal evolution in the western part of the east European craton. Gondwana Res 25:649–667

    Article  Google Scholar 

  • Smith DGW, de St. Jorre L, Reed SJB, Long JVP (1991) Zonally metamictised and other zircons from Thor Lake, northwest territories. Can Mineral 29:301–309

    Google Scholar 

  • Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry M J (eds), magmatism in the ocean basins. Geol Soc Lond Spec Publ 42:313–345

  • Tomašíc N, Gajović A, Bermanec V, Su DS, Rajić Linarić M, Ntaflos T, Schlögl R (2006) Recrystallization mechanisms of fergusonite from metamict mineral precursors. Phys Chem Miner 33:145–159

    Article  Google Scholar 

  • Uher P, Ondrejka M, Konečny P (2009) Magmatic and post-magmatic Y-REE-Th phosphate, silicate and Nb-ta-Y-REE oxide minerals in A-type metagranite: an example from the Turčok massif, the western Carpathians, Slovakia. Mineral Mag 73:1009–1025

    Article  Google Scholar 

  • Utsunomiya S, Valley JW, Cavosie AJ, Wilde SA, Ewing RC (2007) Radiation damage and alteration of zircon from a 3.3 Ga porphyritic granite from the Jack Hills, Western Australia. Chem Geol 236:92–111

    Article  Google Scholar 

  • Van Lichtervelde M, Melcher F, Wirth R (2009) Magmatic vs. hydrothermal origins for zircon associated with tantalum mineralization in the Tanco pegmatite, Manitoba, Canada. Am Mineral 94:439–450

    Article  Google Scholar 

  • Vlach SRF, Gualda GAR (2007) Allanite and chevkinite in A-type granites and syenites of the Graciosa Province, southern Brazil. Lithos 97:98–121

    Article  Google Scholar 

  • Watt GR (1995) High-thorium monazite-(Ce) formed during disequilbrium melting of metapelites under granulite-facies conditions. Mineral Mag 59:735–743

    Article  Google Scholar 

  • Williams ML, Jercinovic MJ, Harlov DE, Budzyń B, Hetherington CJ (2011) Resetting monazite ages during fluid-related alteration. Chem Geol 283:218–225

    Article  Google Scholar 

  • Zozulya D, Eby GN (2010) Rare-metal ore occurrences, related to the late Archean A- type granites from the Keivy zone (NE Fennoscandian shield). In: Ramo OT, Lukkari SR, Heinonen AP (eds) international conference on A-type granites and related rocks through time (IGCP-510). Helsinki, Finland, august 18-20. Abstract volume, pp 113-115

  • Zozulya DR, Bayanova TB, Eby GN (2005) Geology and age of the late Archean Keivy alkaline province, northeastern Baltic shield. J Geol 113:601–608

    Article  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to Dr. Piotr Dzierżanowski, who died on 31st December, 2015. His warm personality and EPMA expertise will be sorely missed by the mineralogical community. We thank Pavel Uher and Silvio Vlach for very helpful journal reviews and Igor Broska for editorial handling. Research support was provided by the Russian Foundation for Basic Research, grant nos. 16-05-00427 and 16-05-00367 to DZ, and by the National Science Centre (NCN) of Poland, grant N N307 634040 to RM and BB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray Macdonald.

Additional information

Editorial handling: I. Broska

Electronic supplementary material

Appendices

Appendices

Table 9 Analytical conditions for fergusonite
Table 10 Analytical conditions for zircon
Table 11 Analytical conditions for monazite
Table 12 Analytical conditions for thorite

FileName: BB-n270116.qtiDat

Signal(s) Used: P Ka, Y La, La La, Ce La, Pr Lb, Nd Lb, Sm Lb, Gd Lb, Dy Lb, Er La, Pb Mb, Ca Ka, Th Ma, U Mb, Si Ka

Spectromers Conditions: Sp1 PET, Sp3 TAP, Sp1 PET, Sp1 PET, Sp2 LIF, Sp2 LIF, Sp2 LIF, Sp2 LIF, Sp2 LIF, Sp2 LIF, Sp4 LPET, Sp1 PET, Sp1 PET, Sp4 LPET, Sp3 TAP

Full Spectromers Conditions: Sp1 PET(2d = 8.75,K = 0.000144), Sp3 TAP(2d = 25.745,K = 0.00218), Sp1 PET(2d = 8.75,K = 0.000144), Sp1 PET(2d = 8.75,K = 0.000144), Sp2 LIF(2d = 4.0267,K = 0.000058), Sp2 LIF(2d = 4.0267,K = 0.000058), Sp2 LIF(2d = 4.0267,K = 0.000058), Sp2 LIF(2d = 4.0267,K = 0.000058), Sp2 LIF(2d = 4.0267,K = 0.000058), Sp2 LIF(2d = 4.0267,K = 0.000058), Sp4 LPET(2d = 8.75,K = 0.000144), Sp1 PET(2d = 8.75,K = 0.000144), Sp1 PET(2d = 8.75,K = 0.000144), Sp4 LPET(2d = 8.75,K = 0.000144), Sp3 TAP(2d = 25.745,K = 0.00218)

Column Conditions: Cond 1: 20 keV 40 nA

Date: 29-Dec-2016

User Name: SX

Setup Name: Mona_PD4A.qtiSet

DataSet Comment: Namaqualand

Comment:

Analysis Date: 1/27/2016 3:14:17 PM

Project Name: Default Project

Sample Name: Default Sample

Analysis Parameters:

Sp

Elements

Xtal

Position

Bg+

Bg-

Slope

Bias

Gain

Dtime

Blin

Wind

Mode

Sp1

P Ka

PET

70,350

-800

1150

 

1284

859

3

560

 

Inte

Sp3

Y La

TAP

25,091

-500

 

1

1270

2381

3

560

 

Inte

Sp1

La La

PET

30,456

-700

1100

 

1283

853

3

560

 

Inte

Sp1

Ce La

PET

29,271

-650

950

 

1283

853

3

560

 

Inte

Sp2

Pr Lb

LIF

56,076

-600

800

 

1804

351

3

560

 

Inte

Sp2

Nd Lb

LIF

53,800

 

1700

1.1

1815

356

3

560

 

Inte

Sp2

Sm Lb

LIF

49,625

-600

500

 

1813

352

3

560

 

Inte

Sp2

Gd Lb

LIF

45,859

-750

1820

 

1806

347

3

560

 

Inte

Sp2

Dy Lb

LIF

42,462

-695

1150

 

1803

337

3

560

 

Inte

Sp2

Er La

LIF

44,305

-1160

1230

 

1808

349

3

560

 

Inte

Sp4

Pb Mb

LPET

58,027

-350

1650

 

1819

802

3

560

 

Inte

Sp1

Ca Ka

PET

38,390

 

500

1.1

1286

871

3

560

 

Inte

Sp1

Th Ma

PET

47,275

-650

700

 

1282

873

3

560

 

Inte

Sp4

U Mb

LPET

42,463

-900

1050

 

1815

787

3

560

 

Inte

Sp3

Si Ka

TAP

27,731

 

400

1.1

1270

2381

3

560

 

Inte

Peak Position: Sp1 70350 (−800, 1150), Sp3 25091 (−500), Sp1 30456 (−700, 1100), Sp1 29271 (−650, 950), Sp2 56076 (−600, 800), Sp2 53800 (1700, 1.1), Sp2 49625 (−600, 500), Sp2 45859 (−750, 1820), Sp2 42462 (−695, 1150), Sp2 44305 (−1160, 1230), Sp4 58027 (−350, 1650), Sp1 38390 (500, 1.1), Sp1 47275 (−650, 700), Sp4 42463 (−900, 1050), Sp3 27731 (400, 1.1)

Standard composition:

Ca5P3O12F = Ca: 39.7368%, P: 18.4251%, O: 38.071%, F: 3.7671%

YPO4 = Y: 48.3501%, P: 16.8446%, O: 34.8053%

LaPO4 = La: 59.392%, P: 13.2435%, O: 27.3645%

CePO4 = Ce: 59.6018%, P: 13.1751%, O: 27.2231%

PrPO4 = Pr: 59.7367%, P: 13.1311%, O: 27.1322%

NdPO4 = Nd: 60.2976%, P: 12.9482%, O: 26.7542%

SmP5O14 = Sm: 28.4166%, P: 29.2609%, O: 42.3225%

GdPO4 = Gd: 62.3455%, P: 12.2803%, O: 25.3742%

DyPO4 = Dy: 63.1133%, P: 12.0299%, O: 24.8568%

ErPO4 = Er: 63.7828%, P: 11.8115%, O: 24.4056%

PbCrO4 = Pb: 64.1098%, Cr: 16.0881%, O: 19.8022%

Diopside-21 = O: 44.3%, Mg: 11.23%, Al: 0.05%, Si: 25.88%, Ca: 18.39%, Ti: 0.05%, Mn: 0.04%, Fe: 0.04%

ThO2 = Th: 87.8806%, O: 12.1194%

UO2 = U: 88.1495%, O: 11.8505%

Calibration file name (Element intensity cps/nA):

P: Ca5P3O12F_P Sp1_P Sp4_001.calDat (P: 81.4 cps/nA)

Y: YPO4_Y Sp3_001.calDat (Y: 403.9 cps/nA

La: LaPO4_LaSp1_LaSp2_LaSp4_001.calDat (La: 287.9 cps/nA)

Ce: CePO4_CeSp1_CeSp2_CeSp4_001.calDat (Ce: 291.8 cps/nA)

Pr: PrPO4_PrSp2_001.calDat (Pr: 38.3 cps/nA)

Nd: NdPO4_NdSp1_NdSp2_NdSp4_001.calDat (Nd: 47.8 cps/nA)

Sm: SmP5O14_SmSp2_001.calDat (Sm: 23.4 cps/nA)

Gd: GdPO4_GdSp2_001.calDat (Gd: 62.6 cps/nA)

Dy: DyPO4_DySp2_001.calDat (Dy: 68.7 cps/nA)

Er: ErPO4_ErSp2_001.calDat (Er: 124.4 cps/nA)

Pb: PbCrO4_PbSp4_001.calDat (Pb: 137.2 cps/nA)

Ca: Diopside-21_CaSp1_CaSp4_001.calDat (Ca: 221.1 cps/nA)

Th: ThO2_ThSp1_ThSp4_005.calDat (Th: 104.6 cps/nA)

U: UO2_U Sp1_U Sp4_005.calDat (U: 462.2 cps/nA)

Si: Diopside_SiSp3_005.calDat (Si: 468.5 cps/nA)

Beam Size: 0 μm

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macdonald, R., Bagiński, B. & Zozulya, D. Differing responses of zircon, chevkinite-(Ce), monazite-(Ce) and fergusonite-(Y) to hydrothermal alteration: Evidence from the Keivy alkaline province, Kola Peninsula, Russia. Miner Petrol 111, 523–545 (2017). https://doi.org/10.1007/s00710-017-0506-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-017-0506-2

Keywords

Navigation