Skip to main content
Log in

Alkali pyroxenes and amphiboles: a window on rare earth elements and other high field strength elements behavior through the magmatic-hydrothermal transition of peralkaline granitic systems

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Peralkaline granites and pegmatites are a prime repository of REE and HFSE, critical raw materials. Although it is accepted that magmatic processes are fundamental in concentrating these metals, the role of hydrothermal fluids in concentrating and fractionating these elements remains unclear. This paper investigates the global reproducibility of the magmatic-hydrothermal evolution of alkaline silica-saturated systems using alkali pyroxene and amphiboles from six alkaline complexes. These minerals contain significant amounts of REE and other HFSE, and pyroxene is stable throughout the magmatic and hydrothermal stages. Amphibole consists of mostly unzoned arfvedsonite, leakeite, and katophorite, while pyroxene is always aegirine. Two types of aegirine were defined. In all complexes, type-I aegirine is zoned; its core is enriched in Ca, REE, Zr, Hf, Sc and Sn, and the rims in Na, Fe3+ and contains secondary rare-metal bearing minerals and fluid inclusions. Type-II aegirine replaces amphibole and is oscillatory zoned. We interpret the amphiboles and REE-rich cores of type-I aegirine to have grown during the magmatic stage, whereas the rims of REE-poorer type-I and II aegirine are formed during the hydrothermal stage. During magmatic crystallization, REE intake into amphiboles and pyroxene as well as LREE-HREE fractionation were favored by their crystallographic properties and by competition among them and other minerals. During subsequent hydrothermal stages, REE and other HFSE were remobilized, locally reconcentrated and fractionated in mineral pseudomorphs and secondary pyroxene. These observations point out the importance of studying rock-forming minerals such as pyroxenes and amphiboles to unravel geological events controlled by common processes globally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ancey M, Bastenaire F, Tixier R (1978) Application des méthodes statistiques en microanalyse. Microanal Microsc Électron Balayage 323:11–16

    Google Scholar 

  • Arzamastsev AA, Arzamastseva LV, Zaraiskii GP (2011) Contact interaction of agpaitic magmas with basement gneisses: an example of the Khibina and Lovozero massifs. Petrology 19:109–133

    Google Scholar 

  • Barkov AY, Martin RF (2015) Anomalous Cr-rich zones in sector-zoned clinopyroxene macrocrysts in gabbro, Mont Royal, Montreal, Quebec, Canada. Can Mineral 53:895–910

    Google Scholar 

  • Beard CD, van Hinsberg VJ, Stix J, Wilke M (2019) Clinopyroxene/melt trace element partitioning in sodic alkaline magmas. J Petrol. https://doi.org/10.1093/petrology/egz052

    Article  Google Scholar 

  • Beard C, van Hinsberg V, Stix J, Wilke M (2020) The effect of fluorine on clinopyroxene/melt trace-element partitioning. Contrib Mineral Petrol. https://doi.org/10.1007/s00410-020-1672-5

    Article  Google Scholar 

  • Boily M, Williams-Jones AE (1994) The role of magmatic and hydrothermal processes in the chemical evolution of the Strange Lake plutonic complex, Quebec-Labrador. Contrib Mineral Petrol 118:33–47

    Google Scholar 

  • Bonin B (1988) Peralkaline granites in Corsica: some petrological and geochemical constraints. Rendiconti Della Soc Ital Mineral Petrol 73:1191–1194

    Google Scholar 

  • Bonin B (1990) Les granites des complexes annulaires, BRGM. Office des publications universitaires

  • Bonin B (2007) A-type granites and related rocks: evolution of a concept, problems and prospects. Lithos 97:1–29

    Google Scholar 

  • Bonin B, Grelou-Orsini C, Vialette Y (1978) Age, origin and evolution of the anorogenic complex of Evisa (Corsica): a K–Li–Rb–Sr study. Contrib Mineral Petrol 65:425–432

    Google Scholar 

  • Bonin B, Platevoet B, Poitrasson F, Renna MR (2008) Eurogranites-IGCP510 2008 Joint Field-meeting—Alkaline The Permian–Triassic A-type Volcanic–Plutonic Igneous Suite of Corsica. In: 33th International Geological Congress in Oslo, Norway Convention Centre, Lillestrom, Norway

  • Borst AM, Friis H, Andersen T et al (2016) Zirconosilicates in the kakortokites of the Ilímaussaq complex, South Greenland: implications for fluid evolution and high-field-strength and rare-earth element mineralization in agpaitic systems. Mineral Mag 80:5–30

    Google Scholar 

  • Bottazzi P, Tiepolo M, Vannucci R et al (1999) Distinct site preferences for heavy and light REE in amphibole and the prediction of Amph/L D REE. Contrib Mineral Petrol 137:36–45

    Google Scholar 

  • Brousse R, Rançon JP (1984) Crystallization trends of pyroxenes from agpaitic phonolites (Cantal, France). Mineral Mag 48:39–45

    Google Scholar 

  • Chakhmouradian AR, Wall F (2012) Rare earth elements: minerals, mines, magnets (and more). Elements 8:333–340

    Google Scholar 

  • Chakhmouradian AR, Zaitsev AN (2012) Rare earth mineralization in igneous rocks: sources and processes. Elements 8:347–353

    Google Scholar 

  • Chengyu W, Dianhao H, Zhongxun G (1990) REE geochemistry in the weathered crust of granites, Longnan Area, Jiangxi Province. Acta Geol Sin - Engl Ed 3:193–209. https://doi.org/10.1111/j.1755-6724.1990.mp3002006.x

    Article  Google Scholar 

  • Cocherie A, Rossi P, Fanning CM, Guerrot C (2005) Comparative use of TIMS and SHRIMP for U–Pb zircon dating of A-type granites and mafic tholeiitic layered complexes and dykes from the Corsican Batholith (France). Lithos 82:185–219

    Google Scholar 

  • Coint N, Barnes CG, Yoshinobu AS et al (2013) Use of trace element abundances in augite and hornblende to determine the size, connectivity, timing, and evolution of magma batches in a tilted batholith. Geosphere 9:1747–1765

    Google Scholar 

  • Cucciniello C, Tucker RD, Jourdan F et al (2016) The age and petrogenesis of alkaline magmatism in the Ampasindava Peninsula and Nosy Be archipelago, northern Madagascar|SpringerLink. Mineral Petrol 110:309–331. https://doi.org/10.1007/s00710-015-0387-1

    Article  Google Scholar 

  • Currie KL (1985) An unusual peralkaline granite near lac Brisson, Quebec-Labrador. Curr Res 73–80

  • Deer WA, Howie RA, Zussman J (1997a) Rock-forming minerals: single-chain silicates, vol 2A. Geological Society of London, London

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1997b) Rock-forming minerals: double-chain silicates, vol 2B. Geological Society of London, London

    Google Scholar 

  • Diehl M (1990) Geology, mineralogy, geochemistry and hydrothermal alteration of the Brandberg alkaline complex. Geological Survey of Namibia, Namibia

    Google Scholar 

  • Donnot M (1963) Côte Nord-Ouest du complexe intrusif alcalin; Ampasindava-Manongarivo

  • Droop GTR (1987) A general equation for estimating Fe 3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral Mag 51:431–435

    Google Scholar 

  • Duggan MB (1988) Zirconium-rich sodic pyroxenes in felsic volcanics from the Warrumbungle Volcano, Central New South Wales, Australia. Mineral Mag 52:491–496

    Google Scholar 

  • Dyulgerov MM, Platevoet B (2006) Unusual Ti and Zr aegirine-augite and potassic magnesio-arfvedsonite in the peralkaline potassic oversaturated Buhovo-Seslavtzi complex, Bulgaria. Eur J Mineral 18:127–138

    Google Scholar 

  • Estrade G (2014) Le complexe cénozoïque alcalin d’Ambohimirahavavy à Madagascar : origine, évolution et minéralisations en métaux rares. Toulouse 3

  • Estrade G, Béziat D, Salvi S et al (2014a) Unusual evolution of silica-under-and-oversaturated alkaline rocks in the Cenozoic Ambohimirahavavy Complex (Madagascar): mineralogical and geochemical evidence. Lithos 206:361–383

    Google Scholar 

  • Estrade G, Salvi S, Béziat D et al (2014b) REE and HFSE mineralization in peralkaline granites of the Ambohimirahavavy alkaline complex, Ampasindava peninsula, Madagascar. J Afr Earth Sci 94:141–155

    Google Scholar 

  • Estrade G, Salvi S, Béziat D (2018) Crystallization and destabilization of eudialyte-group minerals in peralkaline granite and pegmatite: a case study from the Ambohimirahavavy complex, Madagascar. Mineral Mag 82:375–399. https://doi.org/10.1180/minmag.2017.081.053

    Article  Google Scholar 

  • Fedele L, Lustrino M, Melluso L et al (2015) Trace-element partitioning between plagioclase, alkali feldspar, Ti-magnetite, biotite, apatite, and evolved potassic liquids from Campi Flegrei (Southern Italy). Am Mineral 100:233–249

    Google Scholar 

  • European Commission (2018) Report on critical raw materials and the circular economy. http://ec.europa.eu/docsroom/documents/27348. Accessed 25 Apr 2018

  • Ferguson AK (1973) On hour-glass sector zoning in clinopyroxene. Mineral Mag 39:321–325. https://doi.org/10.1180/minmag.1973.039.303.08

    Article  Google Scholar 

  • Flower MF (1974) Phase relations of titan-acmite in the system Na2O–Fe2O3–Al2O3–TiO2–SiO2 at 1000 bars total water pressure. Am Mineral J Earth Planet Mater 59:536–548

    Google Scholar 

  • Foland KA, Landoll JD, Henderson CMB, Chen J (1993) Formation of cogenetic quartz and nepheline syenites. Geochim Cosmochim Acta 57:697–704. https://doi.org/10.1016/0016-7037(93)90380-F

    Article  Google Scholar 

  • Goodenough KM, Wall F, Merriman D (2018) The rare earth elements: demand, global resources, and challenges for resourcing future generations. Nat Resour Res 27:201–216. https://doi.org/10.1007/s11053-017-9336-5

    Article  Google Scholar 

  • Gowans RM, Lewis WJ, Zalnieriunas RV (2017) Quest Rare Minerals Ltd.: Strange Lake Resource Estimation

  • Grigor’eva AA, Zubkova NV, Pekov IV et al (2011) Crystal chemistry of elpidite from Khan Bogdo (Mongolia) and its K-and Rb-exchanged forms. Crystallogr Rep 56:832

    Google Scholar 

  • Gysi AP, Williams-Jones AE, Collins P (2016) Lithogeochemical vectors for hydrothermal processes in the Strange Lake peralkaline granitic REE-Zr–Nb deposit. Econ Geol 111:1241–1276

    Google Scholar 

  • Hatch GP (2015) TMR Advanced Rare-Earth Projects Index—Technology Metals Research. http://www.techmetalsresearch.com/metrics-indices/tmr-advanced-rare-earth-projects-index/. Accessed 27 Jun 2018

  • Hawthorne FC, Oberti R, Ungaretti L et al (1996) Fluor-ferro-leakeite, NaNa2 (Fe2+ 2Fe3+ 2Li) Si8O22F2, a new alkali amphibole from the Canada Pinabete pluton, Questa, New Mexico, USA. Am Mineral 81:226–228

    Google Scholar 

  • Hawthorne FC, Oberti R, Cannillo E et al (2001) Li-bearing arfvedsonitic amphiboles from the Strange Lake peralkaline granite, Quebec. Can Mineral 39:1161–1170

    Google Scholar 

  • Hawthorne FC, Oberti R, Harlow GE et al (2012) Nomenclature of the amphibole supergroup. Am Mineral 97:2031–2048

    Google Scholar 

  • Ishihara S, Hua R, Hoshino M, Murakami H (2008) REE abundance and REE minerals in granitic rocks in the Nanling range, Jiangxi Province, southern China, and generation of the REE-rich weathered crust deposits. Resour Geol 58:355–372

    Google Scholar 

  • Jones AP, Peckett A (1981) Zirconium-bearing aegirines from Motzfeldt, south Greenland. Contrib Mineral Petrol 75:251–255

    Google Scholar 

  • Keppler H, Wyllie PJ (1991) Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite-H2O–HCl and haplogranite-H2O- HF. Contrib Mineral Petrol 109:139–150

    Google Scholar 

  • Kogarko LN, Williams CT, Woolley AR (2002) Chemical evolution and petrogenetic implications of loparite in the layered, agpaitic Lovozero complex, Kola Peninsula, Russia. Mineral Petrol 74:1–24

    Google Scholar 

  • Kovalenko VI, Yarmolyuk VV (1995) Endogenous rare metal ore formations and rare metal metallogeny of Mongolia. Econ Geol 90:520–529

    Google Scholar 

  • Kovalenko VI, Yarmoluyk VV, Sal’nikova EB et al (2006) Geology, geochronology, and geodynamics of the Khan Bogd alkali granite pluton in southern Mongolia. Geotectonics 40:450–466

    Google Scholar 

  • Kramm U, Kogarko LN (1994) Nd and Sr isotope signatures of the Khibina and Lovozero agpaitic centres, Kola Alkaline province, Russia. Lithos 32:225–242. https://doi.org/10.1016/0024-4937(94)90041-8

    Article  Google Scholar 

  • Kynicky J, Chakhmouradian AR, Xu C et al (2011) Distribution and evolution of zirconium mineralization in peralkaline granites and associated pegmatites of the Khan Bogd complex, southern Mongolia. Can Mineral 49:947–965

    Google Scholar 

  • Lacroix A (1923) Minéralogie de Madagascar. A. Challamel (ed) Librairie maritime et coloniale

  • Lagarec K, Rancourt DG (1997) Extended Voigt-based analytic lineshape method for determining N-dimensional correlated hyperfine parameter distributions in Mössbauer spectroscopy. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 129:266–280

    Google Scholar 

  • Larsen LM (1976) Clinopyroxenes and coexisting mafic minerals from the alkaline Ilimaussaq intrusion, South Greenland. J Petrol 17:258–290

    Google Scholar 

  • Larsen LM (1981) Sector zoned aegirine from the Ilímaussaq alkaline intrusion, South Greenland. Contrib Mineral Petrol 76:285–291

    Google Scholar 

  • Larsen LM, Sørensen H (1987) The Ilímaussaq intrusion—progressive crystallization and formation of layering in an agpaitic magma. Geol Soc Lond Spec Publ 30:473–488

    Google Scholar 

  • Leake BE, Woolley AR, Arps CE et al (1997) Nomenclature of amphiboles; report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on new minerals and mineral names. Mineral Mag 61:295–310

    Google Scholar 

  • Li X-H, Li W-X, Li Q-L et al (2010) Petrogenesis and tectonic significance of the 850 Ma Gangbian alkaline complex in South China: evidence from in situ zircon U–Pb dating, Hf–O isotopes and whole-rock geochemistry. Lithos 114:1–15

    Google Scholar 

  • Liu Y, Chen Z, Yang Z et al (2015) Mineralogical and geochemical studies of brecciated ores in the Dalucao REE deposit, Sichuan Province, southwestern China. Ore Geol Rev 70:613–636. https://doi.org/10.1016/j.oregeorev.2015.03.006

    Article  Google Scholar 

  • Locock AJ (2014) An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Comput Geosci 62:1–11

    Google Scholar 

  • London D (2008) Pegmatites. Sp. Pub. 10. Can Miner 347

  • Lucas J, Lucas P, Le Mercier T et al (2014) Rare earths: science, technology, production and use. Elsevier, Amsterdam

    Google Scholar 

  • Mahood GA, Stimac JA (1990) Trace-element partitioning in pantellerites and trachytes. Geochim Cosmochim Acta 54:2257–2276. https://doi.org/10.1016/0016-7037(90)90050-U

    Article  Google Scholar 

  • Mann U, Marks M, Markl G (2006) Influence of oxygen fugacity on mineral compositions in peralkaline melts: the Katzenbuckel volcano, Southwest Germany. Lithos 91:262–285. https://doi.org/10.1016/j.lithos.2005.09.004

    Article  Google Scholar 

  • Marks MA, Markl G (2017) A global review on agpaitic rocks. Earth-Sci Rev 173:229–258

    Google Scholar 

  • Marks M, Halama R, Wenzel T, Markl G (2004) Trace element variations in clinopyroxene and amphibole from alkaline to peralkaline syenites and granites: implications for mineral–melt trace-element partitioning. Chem Geol 211:185–215

    Google Scholar 

  • Migdisov A, Williams-Jones AE, Brugger J, Caporuscio FA (2016) Hydrothermal transport, deposition, and fractionation of the REE: experimental data and thermodynamic calculations. Chem Geol 439:13–42

    Google Scholar 

  • Miller RM (1983) The Pan-African Damara Orogen of South West Africa/Namibia. Evol Damara Orogen South West Afr

  • Miller RR (1996) Structural and textural evolution of the Strange Lake peralkaline rare-element (NYF) granitic pegmatite, Quebec-Labrador. Can Mineral 34:349–371

    Google Scholar 

  • Mollo S, Blundy JD, Giacomoni P et al (2017) Clinopyroxene-melt element partitioning during interaction between trachybasaltic magma and siliceous crust: clues from quartzite enclaves at Mt. Etna Volcano. Lithos 284–285:447–461. https://doi.org/10.1016/j.lithos.2017.05.003

    Article  Google Scholar 

  • Moore M, Chakhmouradian AR, Mariano AN, Sidhu R (2015) Evolution of rare-earth mineralization in the Bear Lodge carbonatite, Wyoming: mineralogical and isotopic evidence. Ore Geol Rev 64:499–521. https://doi.org/10.1016/j.oregeorev.2014.03.015

    Article  Google Scholar 

  • Morimoto N (1988) Nomenclature of pyroxenes. Mineral Petrol 39:55–76

    Google Scholar 

  • Nakamura Y (1973) Origin of sector-zoning of igneous clinopyroxenes. Am Mineral 58:986–990

    Google Scholar 

  • Nardi LVS, de Bitencourt M (2009) A-type granitic rocks in post-collisional settings in southernmost Brazil: their classification and relationship with tectonics and magmatic series. Can Mineral 47:1493–1503. https://doi.org/10.3749/canmin.47.6.1493

    Article  Google Scholar 

  • Nielsen TFD (1979) The occurrence and formation of Ti-aegirines in peralkaline syenites. Contrib Mineral Petrol 69:235–244

    Google Scholar 

  • Ortoleva P, Merino E, Moore C, Chadam J (1987) Geochemical self-organization I; reaction-transport feedbacks and modeling approach. Am J Sci 287:979–1007

    Google Scholar 

  • Pennycook SJ, Nellist PD (2011) Scanning transmission electron microscopy: imaging and analysis. Springer Science & Business Media, New York

    Google Scholar 

  • Piilonen PC, McDonald AM, Lalonde AE (1998) The crystal chemistry of aegirine from Mont Saint-Hilaire, Quebec. Can Mineral 36:779–791

    Google Scholar 

  • Pillet D, Bonhomme MG, Duthou JL, Chenevoy M (1989) Chronologie Rb/Sr et K/Ar du granite peralcalin du lac Brisson, Labrador central, Nouveau-Québec. Can J Earth Sci 26:328–332

    Google Scholar 

  • Poitrasson F, Duthou J-L, Pin C (1995) The relationship between petrology and Nd isotopes as evidence for contrasting anorogenic granite genesis: example of the Corsican Province (SE France). J Petrol 36:1251–1274

    Google Scholar 

  • Poitrasson F, Paquette J-L, Montel J-M et al (1998) Importance of late-magmatic and hydrothermal fluids on the Sm–Nd isotope mineral systematics of hypersolvus granites. Chem Geol 146:187–203

    Google Scholar 

  • Rakotovao S, Rakotondrazafy R, Beziat D et al (2009) Pétrologie du complexe alcalin cénozoïque d’Ambohimirahavavy, presqu’île d’Ampasindava, nord-ouest de Madagascar. Mada-Géo 13:2–19

    Google Scholar 

  • Ranløv J, Dymek RF (1991) Compositional zoning in hydrothermal aegirine from fenites in the Proterozoic Gardar Province South Greenland. Eur J Mineral. https://doi.org/10.1127/ejm/3/5/0837

    Article  Google Scholar 

  • Roelofsen JN (1997) The primary and secondary mafic silicates of two alkaline anorogenic complexes: Strange Lake (Quebec-Labrador) and Amba Dongar (Gujarat, India). PhD Thesis, McGill University Libraries

  • Rønsbo JG, Pedersen AK, Engell J (1977) Titan-aegirine from early Tertiary ash layers in northern Denmark. Lithos 10:193–204

    Google Scholar 

  • Salvi S, William-Jones A (1995) Zirconosilicate phase relations in the Strange Lake (Lac Brisson) pluton, Quebec-Labrador, Canada: American Mineralogist. Am Mineral 80:1031–1040. https://doi.org/10.2138/am-1995-9-1019

    Article  Google Scholar 

  • Salvi S, Williams-Jones AE (1990) The role of hydrothermal processes in the granite-hosted Zr, Y, REE deposit at Strange Lake, Quebec/Labrador: evidence from fluid inclusions. Geochim Cosmochim Acta 54:2403–2418

    Google Scholar 

  • Salvi S, Williams-Jones AE (1996) The role of hydrothermal processes in concentrating high-field strength elements in the Strange Lake peralkaline complex, northeastern Canada. Geochim Cosmochim Acta 60:1917–1932

    Google Scholar 

  • Salvi S, Williams-Jones AE (1997) Fischer-Tropsch synthesis of hydrocarbons during sub-solidus alteration of the Strange Lake peralkaline granite, Quebec/Labrador, Canada. Geochim Cosmochim Acta 61:83–99

    Google Scholar 

  • Salvi S, Williams-Jones AE (2006) Alteration, HFSE mineralisation and hydrocarbon formation in peralkaline igneous systems: Insights from the Strange Lake Pluton, Canada. Lithos 91:19–34

    Google Scholar 

  • Sanematsu K, Kon Y, Imai A et al (2013) Geochemical and mineralogical characteristics of ion-adsorption type REE mineralization in Phuket, Thailand. Miner Deposita 48:437–451. https://doi.org/10.1007/s00126-011-0380-5

    Article  Google Scholar 

  • Schmitt AK, Trumbull RB, Dulski P, Emmermann R (2002) Zr-Nb-REE mineralization in peralkaline granites from the Amis Complex, Brandberg (Namibia): evidence for magmatic pre-enrichment from melt inclusions. Econ Geol 97:399–413

    Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr 32:751–767

    Google Scholar 

  • Sheard ER, Williams-Jones AE, Heiligmann M et al (2012) Controls on the concentration of zirconium, niobium, and the rare earth elements in the thor lake rare metal deposit, northwest territories, Canada. Econ Geol 107:81–104. https://doi.org/10.2113/econgeo.107.1.81

    Article  Google Scholar 

  • Shearer CK, Larsen LM (1994) Sector-zoned aegirine from the Ilimaussaq alkaline intrusion, South Greenland: implications for trace-element behavior in pyroxene. Am Mineral 79:340–352

    Google Scholar 

  • Siegel K, Williams-Jones AE, Stevenson R (2017a) A Nd-and O-isotope study of the REE-rich peralkaline Strange Lake granite: implications for Mesoproterozoic A-type magmatism in the Core Zone (NE-Canada). Contrib Mineral Petrol 172:54

    Google Scholar 

  • Siegel K, Williams-Jones AE, van Hinsberg VJ (2017b) The amphiboles of the REE-rich A-type peralkaline Strange Lake pluton–fingerprints of magma evolution. Lithos 288:156–174

    Google Scholar 

  • Smith MP (2007) Metasomatic silicate chemistry at the Bayan Obo Fe–REE–Nb deposit, Inner Mongolia, China: contrasting chemistry and evolution of fenitising and mineralising fluids. Lithos 93:126–148

    Google Scholar 

  • Smith MP, Henderson P, Jeffries TER et al (2004) The rare earth elements and uranium in garnets from the Beinn an Dubhaich Aureole, Skye, Scotland, UK: constraints on processes in a dynamic hydrothermal system. J Petrol 45:457–484

    Google Scholar 

  • Strong DF (1969) Formation of the hour-glass structure in augite. Mineral Mag 37:472–479

    Google Scholar 

  • Sun S-S, McDonough W (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345

    Google Scholar 

  • Thomas RJ, De Waele B, Schofield DI et al (2009) Geological evolution of the Neoproterozoic Bemarivo Belt, northern Madagascar. Precambrian Res 172:279–300. https://doi.org/10.1016/j.precamres.2009.04.008

    Article  Google Scholar 

  • Trail D, Bruce Watson E, Tailby ND (2012) Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochim Cosmochim Acta 97:70–87. https://doi.org/10.1016/j.gca.2012.08.032

    Article  Google Scholar 

  • Ubide T, McKenna CA, Chew DM, Kamber BS (2015) High-resolution LA-ICP-MS trace element mapping of igneous minerals: In search of magma histories. Chem Geol 409:157–168. https://doi.org/10.1016/j.chemgeo.2015.05.020

    Article  Google Scholar 

  • Ubide T, Mollo S, Zhao J et al (2019) Sector-zoned clinopyroxene as a recorder of magma history, eruption triggers, and ascent rates. Geochim Cosmochim Acta 251:265–283. https://doi.org/10.1016/j.gca.2019.02.021

    Article  Google Scholar 

  • US Geological Survey (2019) Rare Earths Statistics and Information. In: Miner. Commod. Summ. https://www.usgs.gov/centers/nmic/rare-earths-statistics-and-information. Accessed 28 Aug 2019

  • Vasyukova O, Williams-Jones AE (2014) Fluoride–silicate melt immiscibility and its role in REE ore formation: evidence from the Strange Lake rare metal deposit, Québec-Labrador, Canada. Geochim Cosmochim Acta 139:110–130

    Google Scholar 

  • Vasyukova OV, Williams-Jones AE (2019) Closed system fluid-mineral-mediated trace element behaviour in peralkaline rare metal pegmatites: evidence from Strange Lake. Chem Geol 505:86–99

    Google Scholar 

  • Vasyukova O, Williams-Jones A (2020) Partial melting, fractional crystallisation, liquid immiscibility and hydrothermal mobilisation–A ‘Recipe’for the formation of economic A-Type granite-hosted HFSE deposits. Lithos 356:105300

    Google Scholar 

  • Vasyukova OV, Williams-Jones AE, Blamey NJF (2016) Fluid evolution in the Strange Lake granitic pluton, Canada: implications for HFSE mobilisation. Chem Geol 444:83–100

    Google Scholar 

  • Veksler IV, Dorfman AM, Dulski P et al (2012) Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite. Geochim Cosmochim Acta 79:20–40. https://doi.org/10.1016/j.gca.2011.11.035

    Article  Google Scholar 

  • Wang Q, Deng J, Liu X et al (2010) Discovery of the REE minerals and its geological significance in the Quyang bauxite deposit, West Guangxi, China. J Asian Earth Sci 39:701–712. https://doi.org/10.1016/j.jseaes.2010.05.005

    Article  Google Scholar 

  • William-Jones AE, Migdisov AA, Samson IM (2012) Hydrothermal mobilisation of the Rare Earth Elements–a Tale of “Ceria” and “Yttria”. Elements 8:355–360

    Google Scholar 

  • Xu C, Kynickỳ J, Smith MP et al (2017) Origin of heavy rare earth mineralization in South China. Nat Commun 8:14598

    Google Scholar 

  • Yang X-M, Yang X-Y, Zheng Y-F, Le Bas MJ (2003) A rare earth element-rich carbonatite dyke at Bayan Obo, Inner Mongolia, North China. Mineral Petrol 78:93–110

    Google Scholar 

  • Zaitsev AN, Terry Williams C, Jeffries TE et al (2014) Rare earth elements in phoscorites and carbonatites of the Devonian Kola Alkaline Province, Russia: Examples from Kovdor, Khibina, Vuoriyarvi and Turiy Mys complexes. Ore Geol Rev 61:204–225. https://doi.org/10.1016/j.oregeorev.2014.02.002

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by an INSU/TelluS grant from CNRS (French National Center for Scientific Research). We thank Anthony Williams-Jones, Olga Vasyukova and Sam Broom-Fendley for providing some of the rock samples from the Strange Lake and Amis complexes and David Chew who helped with LA-ICP-MS mapping. Kathryn Goodenough provided helpful discussion. We also wish to thank CPM reviewers Charles Beard and Adrian Finch for their suggestions and constructive criticisms, which greatly improved the final version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Estrade.

Additional information

Communicated by Gordon Moore.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1 Text and maps detailing the geological background of all six studied complexes (PDF 909 kb)

410_2020_1723_MOESM2_ESM.pdf

Online Resource 2 Table of standards used for calibration of EPMA and associated detection limits. Abbreviation: n.a.: not analyzed (PDF 358 kb)

Online Resource 3 Table of detection limits for in situ LA-ICPMS measurements (PDF 391 kb)

410_2020_1723_MOESM4_ESM.pdf

Online Resource 4 Microprobe maps on a type-I aegirine crystal at Amis. 3 zones are distinguished: A, the core rich in Ca, Zr, Sn, Hf and poor in Na, Fe; C, sector zoning rich in Ti, Ca; and D, sector zoning rich in Fe. The thick line represents limits of the map (PDF 8397 kb)

410_2020_1723_MOESM5_ESM.pdf

Online Resource 5 Microprobe maps on a type-I aegirine crystal at Evisa. 3 zones are distinguished: A, the core rich in Ca, Zr, Sn, Hf and poor in Na, Fe; C, sector zoning rich in Ti, Ca; and D, sector zoning rich in Fe. The thick line represents limits of the map (PDF 9617 kb)

410_2020_1723_MOESM6_ESM.pdf

Online Resource 6 Microprobe maps on a type-I aegirine crystal at Khan Bogd. 4 zones are distinguished: A, the core rich in Ca, Zr, Sn, Hf and poor in Na, Fe; B; C, sector zoning rich in Ti, Ca; and D, sector zoning rich in Fe (PDF 8807 kb)

410_2020_1723_MOESM7_ESM.pdf

Online Resource 7 Microprobe maps on a type-I aegirine crystal at Manongarivo. 3 zones are distinguished: A, the core rich in Ca, Zr, Sn, Hf and poor in Na, Fe; C, sector zoning rich in Ti, Ca; and D, sector zoning rich in Fe (PDF 10169 kb)

410_2020_1723_MOESM8_ESM.pdf

Online Resource 8 Microprobe maps on a type-II aegirine crystal at Strange Lake. No core-to-rim zoning is observed, but an oscillatory zoning occurs for most elements (PDF 5758 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernard, C., Estrade, G., Salvi, S. et al. Alkali pyroxenes and amphiboles: a window on rare earth elements and other high field strength elements behavior through the magmatic-hydrothermal transition of peralkaline granitic systems. Contrib Mineral Petrol 175, 81 (2020). https://doi.org/10.1007/s00410-020-01723-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-020-01723-y

Keywords

Navigation