Skip to main content
Log in

Recrystallization mechanisms of fergusonite from metamict mineral precursors

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The metamict state and recrystallization of fergusonite in metamict natural samples were studied by thermal methods (TGA-DTA), X-ray powder diffraction (XRD), Raman spectroscopy (RS), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and electron microprobe (EPMA). Two metamict mineral samples of fergusonite were investigated in order to identify the original premetamict crystal structure and to identify recrystallization mechanisms. The TEM data and RS provided evidence on the partial preservation of the original structure in the investigated minerals, which are X-ray amorphous. It was shown that fergusonite could recrystallize from a metamict mineral with original fergusonite structure or from metamictized pyrochlore, which was altered before or after metamictization. Two recrystallization mechanisms were recognized: (a) epitaxial growth occurring at the boundary between preserved premetamict structure fragments and completely metamictized areas, and (b) nucleation-crystal growth mechanism occurring in completely amorphous areas of the minerals, and resulting in recrystallization of the original mineral as well as in the crystallization of a new mineral with a modified chemical composition as compared to the initial matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Begg BD, Hess NJ, McCready DE, Thevuthasan S, Weber WJ (2001) Heavy-ion irradiation effects in Gd2(Ti2-x Zr x )O7 pyrochlores. J Nucl Mater 289:188–193

    Article  Google Scholar 

  • Berman J (1955) Identification of metamict minerals by X-ray diffraction. Am Mineral 40:805–827

    Google Scholar 

  • Blasse G (1973) Vibrational spectra of yttrium niobate and tantalate. J Solid State Chem 7:169–171

    Article  Google Scholar 

  • Bordes N, Wang LM, Ewing RC, Sickafus KE (1995) Ion-beam induced disordering and onset of amorphization in spinel by defect accumulation. J Mater Res 10:981–985

    Article  Google Scholar 

  • Capitani GC, Leroux H, Doukhan JC, Rios S, Zhang M, Salje EKH (2000) A TEM investigation of natural metamict zircons: structure recovery of amorphous domains. Phys Chem Miner 27:545–556

    Article  Google Scholar 

  • Gatan (1999) Digital Micrograph 3.6.5. Gatan Inc., Pleasanton, CA, USA

  • Drake MJ, Weill DF (1972) New rare earth element standards for electron microprobe analysis. Chem Geol 10:179–181

    Article  Google Scholar 

  • Ewing RC (1987) The structure of metamict state. In: Konta J (eds) 2nd international conference on Natural Glasses, Prague. Charles University, Praha, pp 41–48

    Google Scholar 

  • Ewing RC (1994) The metamict state: 1993—the centennial. Nucl Instrum Methods B 91:22–29

    Article  Google Scholar 

  • Ewing RC, Wang LM (1992) Amorphization of zirconolite: alpha-decay event damage versus krypton ion irradiation. Nucl Instrum Methods B 65:319–323

    Article  Google Scholar 

  • Ewing RC, Weber WJ, Lian J (2004) Nuclear waste disposal—pyrochlore (A2B2O7) Nuclear waste form for the immobilization of plutonium and “minor” actinides. J Appl Phys 95:5949–5971

    Article  Google Scholar 

  • Geisler T, Pidgeon RT, Kurtz R, Van Bronswijk W, Schleicher H (2003a) Experimental hydrothermal alteration of partially metamict zircon. Am Mineral 88:1496–1513

    Google Scholar 

  • Geisler T, Trachenko K, Rios S, Dove MT, Salje EKH (2003b) Impact of self-irradiation damage on the aqueous durability of zircon (ZrSiO4): implications for its suitability as a nuclear waste form. J Phys Condens Matter 15:L597-L605

    Article  Google Scholar 

  • Geisler T, Zhang M, Salje EKH (2003c) Recrystallization of almost fully amorphous zircon under hydrothermal conditions: An infrared spectroscopic study. J Nucl Materials 320:280–291

    Article  Google Scholar 

  • Gibbons JF (1972) Ion implantation in semiconductors: Damage production and annealing. Proc IEEE 60:1062–1067

    Article  Google Scholar 

  • Glerup M, Nielsen OF, Poulsen FW (2001) The structural transformation from the pyrochlore structure, A2B2O7 to the fluorite structure, AO2, studied by Raman spectroscopy and defect chemistry modeling. J Solid State Chem 160:25–32

    Article  Google Scholar 

  • Gögen K, Wagner GA (2000) Alpha-recoil track dating of Quaternary volcanics. Chem Geol 166:127–137

    Article  Google Scholar 

  • Gong WL, Wang LM, Ewing RC, Zhang J (1996) Electron-irradiation- and ion-beam-induced amorphization of coesite. Phys Rev B 54:3800–3808

    Article  Google Scholar 

  • Gorshevskaya SA, Sidorenko GA, Smorchkov IE (1961) A new modification of fergusonite: β-fergusonite (abstract in Am Mineral 46:1516–1517). Geologiya Mestorozhdenii Redkikh Elementov 9:28–29

    Google Scholar 

  • Janeczek J, Eby RK (1993) Annealing of radiation damage in allanite and gadolinite. Phys Chem Mineral 19:343–356

    Google Scholar 

  • Karioris FG, Gowda KA, Cartz L, Labbe JC (1982) Damage cross-sections of heavy ions in crystal structures. J Nucl Materials 108/109:748–750

    Article  Google Scholar 

  • Keller C (1962) Über ternäre Oxide des Niobs and Tanatls vom Typ ABO4. Z Anorg Allg Chem 318:89–106

    Article  Google Scholar 

  • Komkov AI (1959) Struktura prirodnogo fergusonita i ego polimorfioi modifikacii (in Russian). Crystallography 4:836–841

    Google Scholar 

  • Lábár JL (2000) Proc. of EUREM 12, July 2000 Frank L, Ciampor F (eds) Vol. III, Brno, pp 1379–380

  • Laversenne L, Guyot Y, Goutaudier C, Cohen-Adad MTh, Boulon G (2001) Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: cubic Y2O3, Lu2O3 and monoclinic Gd2O3. Opt Mater 16:475–483

    Article  Google Scholar 

  • Lian J, Wang SX, Wang LM, Ewing RC (2001) Radiation damage and nanocrystal formation in uranium–niobium titanates. J Nucl Mater 297:89–96

    Article  Google Scholar 

  • Lian J, Wang L, Chen J, Sun K, Ewing RC, Matt Farmer J, Boatner LA (2003) The order–disorder transition in ion-irradiated pyrochlore. Acta Mater 51:1493–1502

    Article  Google Scholar 

  • Lumpkin GR, Ewing RC (1988) Alpha-decay damage in minerals of the pyrochlore group. Phys Chem Miner 16:2–20

    Article  Google Scholar 

  • Lumpkin GR, Ewing RC (1992) Geochemical alteration of pyrochlore group minerals: Microlite subgroup. Am Mineral 77:179–188

    Google Scholar 

  • Lumpkin GR, Ewing RC (1995) Geochemical alteration of pyrochlore group minerals: Pyrochlore subgroup. Am Mineral 80:725–731

    Google Scholar 

  • Lumpkin GR, Ewing RC (1996) Geochemical alteration of pyrochlore group minerals: Betafite subgroup. Am Mineral 81:1237–1248

    Google Scholar 

  • Lumpkin RL, Smith KL, Blackford MG (2001) Heavy ion irradiation studies of columbite, brannnerite, and pyrochlore structure types. J Nucl Mater 289:177–187

    Article  Google Scholar 

  • Markiv VYa, Belyavina NM, Markiv MV, Titov YuA, Sych AM, Sokolov AN, Kapshuk AA, Slobodyanyk MS (2002) Peculiarities of polymorphic transformations in YbTaO4 and crystal structure of its modifications. J Alloy Compound 346:263–268

    Article  Google Scholar 

  • Meldrum A, Wang LM, Ewing RC (1996) Ion-beam-induced amorphization of monazite. Nucl Instrum Meth B 116:220–224

    Article  Google Scholar 

  • Meldrum A, Boatner LA, Ewing RC (1997) Elecron-irradiation-induced nucleation and growth in amorphous LaPO4, ScPO4, and zircon. J Mater Res 12:1816–1827

    Article  Google Scholar 

  • Meldrum A, Boatner LA, Weber WJ, Ewing RC (1998) Radiation damage in zircon and monazite. Geochim Cosmochim Acta 62:2509–2520

    Article  Google Scholar 

  • Meldrum A, Boatner LA, Zinkle SJ, Wang SX, Wang LM, Ewing RC (1999) Effect of dose rate and temperature on the crystalline-to-metamict transformation in the ABO4 orthosilicates. Can Mineral 37:207–221

    Google Scholar 

  • Meldrum A, Boatner LA, Ewing RC (2000) A comparison of radiation effects in crystalline ABO4-type phosphates and silicates. Mineral Mag 64:183–192

    Article  Google Scholar 

  • Motta AT (1997) Amorphization of intermetallic compounds under irradiation—a review. J Nucl Matter 244:227–250

    Article  Google Scholar 

  • Murakami T, Chakoumakos BC, Ewing RC, Lumpkin GR, Weber WJ (1991) Alpha-decay event damage in zircon. Am Mineral 76:1510–1532

    Google Scholar 

  • Nasdala L, Irmer L, Wolf D (1995) The degree of metamictization in zircon: a Raman spectroscopic study. Eur J Mineral 7:471–478

    Google Scholar 

  • Nasdala L, Lengauer CL, Hanchar JM, Kronz A, Wirth R, Blanc P, Kennedy AK, Seydoux-Guillaume AM (2002) Annealing radiation damage and the recovery of cathodoluminescence. Chem Geol 191:121–140

    Article  Google Scholar 

  • Nasdala L, Reiners PW, Garver JI, Kennedy AK, Stern RA, Balan E, Wirth R (2004a) Incomplete retention of radiation damage in zircon from Sri Lanka. Am Mineral 89:219–231

    Google Scholar 

  • Nasdala L, Smith DC, Kaindl R, Ziemann MA (2004b) Raman spectroscopy: analytical perspectives in mineralogical research. In: Beran A, Libowitzky E (eds) Spectroscopic methods in mineralogy, European Mineralogical Union Notes in Mineralogy, vol. 6, Budapest, pp 281–343

  • Nasdala L, Wenzel M, Vavra G, Irmer F, Wenzel T, Kober B (2001) Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage. Contrib Mineral Petr 141:125–144

    Google Scholar 

  • Pouchou JL, Pichoir F (1991) Quantification analyses of homogeneous and stratified microvolumes applied model “PAP”. In: Heinrich KFJ, Newbury DE (eds) Electron probe quantification. Plenum, New York pp 31–35

  • Powder Diffraction File (2004) Database Sets 1–54, International Centre for Diffraction Data (ICDD), Newtown Square

  • Rios S, Boffa-Ballaran T (2003) Microstructure of radiation-damaged zircon under pressure. J Appl Cryst 36:1006–1012

    Article  Google Scholar 

  • Rios S, Salje EKH, Zhang M, Ewing RC (2000) Amorphization in zircon: evidence for direct impact damage. J Phys Condens Matter 12:2401–2412

    Article  Google Scholar 

  • Seydoux-Guillaume AM, Wirth R, Nasdala L, Gottschalk M, Montel JM, Heinrich W (2002) An XRD, TEM and Raman study of experimentally annealed natural monazite. Phys Chem Miner 29:240–253

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A32:751–767

    Google Scholar 

  • Sinclair W, Ringwood AE (1981) Alpha-recoil damage in natural zirconolite and perovskite. Geochem J 15:229–243

    Google Scholar 

  • Tomašić N, Gajović A, Bermanec V, Rajić M (2004) Recrystallization of metamict Nb–Ta–Ti–REE complex oxides: a coupled X-ray-diffraction and Raman spectroscopy study of aeschynite-(Y) and polycrase-(Y). Can Mineral 42:1847–1857

    Article  Google Scholar 

  • Trachenko K, Pruneda M, Artacho E, Dove MT (2004) Radiation damage effects in the perovskite CaTiO3 and resistance of materials to amorphization. Phys Rev B 70:134112

    Article  Google Scholar 

  • Wang LM, Eby RK, Janeczek J, Ewing RC (1991) In situ TEM study of ion-beam-induced amorphization of complex silicate structures. Nucl Instr Methods B 59/60:395–400

    Article  Google Scholar 

  • Wang SX, Wang LM, Ewing RC, Was GS, Lumpkin GR (1999) Ion irradiation-induced phase transformation of pyrochlore and zirconolite, Nucl Instr Meth B 148:704–709

    Article  Google Scholar 

  • Wang SX, Wang LM, Ewing RC (2000) Nano-scale glass formation in pyrochlore by ion irradiation. J Non-Cryst Solids 274:238–243

    Article  Google Scholar 

  • Weber WJ (1993) Alpha-decay-induced amorphization in complex silicate structures. J Am Ceram Soc 76:1729–1738

    Article  Google Scholar 

  • Weber WJ, Ewing RC, Catlow CRA, Diaz de la Rubia T, Hobbs LW, Kinoshita C, Matzke Hj, Motta AT, Nastasi M, Salje EKH, Vance ER, Zinkle SJ (1998) Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J Mater Res 13:1434–1484

    Article  Google Scholar 

  • Weber WJ, Ewing RC, Wang LM (1994) The radiation-induced crystalline-to-amorphous transition in zircon. J Mater Res 9:688–698

    Article  Google Scholar 

  • Weitzel H, Schröcke H (1980) Kristallstrukturverfeinerungen von Euxenit, Y(Nb0.5Ti0.5)2O6, und M-Fergusonit, YNbO4. Z Kristallogr 152:69–82

    Google Scholar 

  • Wolten GM (1967) The structure of the M’-phase of YTaO4, a third fergusonite polymorph. Acta Crystallog 23:939–944

    Article  Google Scholar 

  • Wolten GM, Chase AB (1967) Synthetic fergusonites and a new polymorph of yttrium tantalite. Am Mineral 52:1536–1541

    Google Scholar 

  • Yashima M, Lee JH, Kakihana M, Yoshimura M (1997) Raman spectral characterization of existing phases in the Y2O3–Nb2O5 system. J Phys Chem Solids 58:1593–1597

    Article  Google Scholar 

  • Yudintsev SV, Stefanovskii SV, Kir’yanova OI, Lian J, Ewing R (2001) Radiation resistance of fused titanium ceramic for actinide immobilization. Atom Energy 90:487–494

    Article  Google Scholar 

  • Zhang M, Salje EKH, Capitani GC, Leroux H, Clark AM, Schlüter, Ewing RC (2000a) Annealing of α-decay damage in zircon: a Raman spectroscopic study. J Phys Condens Matter 12:3131–3148

    Article  Google Scholar 

  • Zhang M, Salje EKH, Farnan I, Graeme-Barber A, Daniel P, Ewing RC, Clark AM, Leroux H (2000b) Metamictization of zircon: Raman spectroscopic study. J Phys Condens Matter 12:1915–1925

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Gunnar Raade from Geological and Mineralogical Museum in Oslo, and Vladimir Zebec from Croatian Natural History Museum for providing the mineral samples. We thank dr. Ozren Gamulin from School of Medicine, University of Zagreb, for FT Raman measurements. The constructive comments and helpful suggestions of S. Rios and S. V. Yudintsev are gratefully acknowledged. The investigation was supported by the Ministry of Science, Education and Sport of Republic of Croatia through the grants No. 0119420 and 0098022. EMPA analyses were supported by Austrian–Croatian bilateral project. The work at TEM facility in Berlin was financially supported by the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Tomašić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomašić, N., Gajović, A., Bermanec, V. et al. Recrystallization mechanisms of fergusonite from metamict mineral precursors. Phys Chem Minerals 33, 145–159 (2006). https://doi.org/10.1007/s00269-006-0061-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-006-0061-6

Keywords

Navigation