Skip to main content
Log in

Hydrothermal alteration and evolution of Zr-Th-U-REE mineralization in the microgranite of Wadi Ras Abda, North Eastern Desert, Egypt

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Ras Abda plutonic suite, North Eastern Desert of Egypt, consists predominantly of Neoproterozoic calc-alkaline older granites. Minor exposures of pink microgranite are occurring along Wadi Ras Abda within the older granites. Previous studies on this area demonstrated that the microgranite is altered in some parts and contains anomalous concentrations of rare metal elements (Zr, Th, and U). These altered and mineralized zones are re-assessed using field observations, chemical analysis, and by the application of various transmitted light and electron microscopic techniques. The rare metals exist as mineral segregation grew freely into open cavities of the microgranite and concordant with the NNE strike-slip fault movement. The mineralized zones contain an assemblage of secondary magnetite, zircon, uranothorite, columbite-(Mn), fergusonite-(Y), and allanite-(Ce). The extreme abundance of zircon in the mineralized zone, along with other evidence, indicates a hydrothermal origin of this zircon together with associated rare metals. The geochemical investigation and mass balance calculations revealed extreme enrichment of Zr, Th, U, Y, Nb, Ta, and REE. Post-magmatic hydrothermal alterations resulted in such pronounced chemical and mineralogical heterogeneity. The hydrothermal fluids are thought to be oxidizing, alkaline and of medium temperature (> 250 °C). The average contents of the elements Zr (1606 ppm), Th (1639 ppm), U (306 ppm), Nb (955 ppm), and REE (1710 ppm) in the mineralized microgranite reach sub-economic levels and could be a potential source of these elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdalla HM, Ishihara S, Matsueda H, Abdel-Monem AA (1996) On the albite-enriched granitoids at Um Ara area, Southeastern Desert, Egypt: I. Geochemical, ore potentiality and fluid inclusion studies. Geochem Explor 57:127–138

    Article  Google Scholar 

  • Abdel Hamid AA (2013) Mineralogical and geochemical studies of the uranium-bearing granites, Gabal Abu Harba area, North Eastern Desert, Egypt. Ph.D Theis, Fac Sci, Benha Univ, 173pp

  • Abdel-Naby HH (2008) Genesis of secondary uranium minerals associated with jasperoid veins, El Erediya area, Eastern Desert, Egypt. Mineral Deposita 43:933–944

    Article  Google Scholar 

  • Ahdel Warith AA (2000) Geology, geochemistry and radioactivity of the granitoid rocks in Gabal El Magal area. Central, Eastern Desert, Egypt. Ph. D. Thesis, Fac Sci Ain Shams Univ, Cairo, 190pp

  • Akaad MK, Noweir AM (1980) Geology and lithostratigraphy of the Arabian Desert orogenic belt of Egypt between latitudes 25° 35′ and 26° 30′ N. Inst App Geol Jeddah Bull 3:127–135

    Google Scholar 

  • Akaad MK, El-Gaby S, Habib ME (1973) The Barud Gneisses and the origin of grey granite. Bull Fac Sci Assiut Univ 2:55–69

    Google Scholar 

  • Anders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochim Cosmochim Acta 53:197–214

    Article  Google Scholar 

  • Attawiya MY, Nossair LM, Ragab AI, El Debeiky SA (1996) Geology, petrography, geochemistry and geochronology of the old granite batholith between Qena and Safaga, Eastern Desert, Egypt. Proceedings of the 6th Conference of Nuclear Sciences and Applications, Cairo, Egypt

  • Bau M (1991) Rare-earth element mobility during hydrothermal and metamorphic fluid–rock interaction and the significance of the oxidation state of europium. Chem Geol 93:219–230

    Article  Google Scholar 

  • Bau M (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib Mineral Petrol 123:323–333

    Article  Google Scholar 

  • Bau M, Dulski P (1995) Comparative study of yttrium and rare earth element behaviors in fluorine-rich hydrothermal fluids. Contrib Mineral Petrol 119:213–223

    Article  Google Scholar 

  • Belousova EA, Griffin WL, O'Reilly SY (2006) Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: examples from Eastern Australian granitoids. J Petrol 47:329–353

    Article  Google Scholar 

  • Benisek A, Finger F (1993) Factors controlling the development of prism faces in granite zircons: a microprobe study. Contrib Mineral Petrol 114:441–451

    Article  Google Scholar 

  • Boily M, Williams-Jones AE (1994) The role of magmatic and hydrothermal processes in the chemical evolution of the Strange Lake pluton complex, Quebec-Labrador. Contrib Mineral Petrol 118:33–47

    Article  Google Scholar 

  • Bojanowski MJ, Bagiński B, Clarkson E, Macdonald R, Marynowski L (2012) Low-temperature zircon growth related to hydrothermal alteration of siderite concretions in Mississippian shales, Scotland. Contrib Mineral Petrol 164:245–259

    Article  Google Scholar 

  • Burakov BE, Hanchar JM, Zamoryanskaya MV, Garbuzov VM, Zirlin VA (2002) Synthesis and investigation of Pu-doped single crystal zircon, (Zr, Pu)SiO4. Radiochim Acta 90:95–97

    Article  Google Scholar 

  • Caironi V, Colombo A, Tunesi A, Gritti C (2000) Chemical variations of zircon compared with morphological evolution during magmatic crystallization: an example from the Valle del Cervo Pluton (Western Alps). Eur J Mineral 12:779–794

    Article  Google Scholar 

  • Claoue-Long JC, King RW, Kerrich R (1990) Archean hydrothermal zircon in the Abitibi Greenstone Belt: constraints on the timing of gold mineralization. Earth Planet Sci 98:109–128

    Article  Google Scholar 

  • Claoue-Long JC, King RW, Kerrich R (1992) Archean hydrothermal zircon in the Abitibi Greenstone Belt: constraints on the timing of gold mineralization-reply. Earth Planet Sci 109:601–609

    Article  Google Scholar 

  • Corfu F, Davis DW (1991) Archean hydrothermal zircon in the Abitibi Greenstone Belt: constraints on the timing of gold mineralization-comment. Earth Planet Sci 104:545–552

    Article  Google Scholar 

  • Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. Rev Mineral Geochem 53:469–500

    Article  Google Scholar 

  • Cuney M, Emetz A, Mercadier J, Mykchaylov V, Shunko V, Anatoliy Yuslenko A (2012) Uranium deposits associated with Na-metasomatism from Central Ukraine: a review of some of the major deposits and genetic constraints. Ore Geol Rev 44:82–106

    Article  Google Scholar 

  • Dardier AM, Al-Wakeel MI (1998) Geology, petrology and radioactivity of Gabal Um Tagher—Gabal Abu Furad area, central Eastern Desert, Egypt. Egypt J Geol 42:75–103

    Google Scholar 

  • Dardir AA, Khalaf I, Matter E, Aziz M (1987) Basement rocks of Safajah quadrangle, Egypt (NG36K5-6), 1:100,000 Geological Map, Egypt. Geol Surv Min Author, Cairo, Egypt

  • Debon F, Le Fort P (1983) A cationic classification of common plutonic rocks and their magmatic associations: principles, method, applications. Earth Sci 73:135–149

    Google Scholar 

  • El Gaby S (1975) Petrochemistry and geochemistry of some granites from Egypt. N Jb Mineral (Abh) 124:147–189

    Google Scholar 

  • Farag SS (2008) Contribution to geology, petrography and radioactivity of Gabal Ras Al-Barud granites and associated pegmatites, North Eastern Desert, Egypt. MERC Ain Shams University. Earth Sci Ser 88:164–186

    Google Scholar 

  • Fowler A, Ali KG, Omar SM, Eliwa HA (2006) The significance of gneissic rocks and synmagmatic extensional ductile shear zones of the Barud area for the tectonics of the North Eastern Desert, Egypt. J Afr Earth Sci 46:201–220

    Article  Google Scholar 

  • Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42:2033–2048

    Article  Google Scholar 

  • Fu B, Mernagh TP, Kita NK, Kemp AIS, Valley JW (2009) Distinguishing magmatic zircon from hydrothermal zircon: a case study from the Gidginbung high-sulphidation Au–Ag–(Cu) deposit, SE Australia. Chem Geol 259:131–142

    Article  Google Scholar 

  • Giret A, Bonin B, Léger JM (1980) Amphibole compositional trends in the oversaturated and undersaturated alkaline plutonic ring-complexes. Can Mineral 18:481–495

    Google Scholar 

  • Grant JA (1986) The isocon diagram- a simple solution to Gresens’ equation for metasomatic alteration. Econ Geol 81:1976–1982

    Article  Google Scholar 

  • Gresens RL (1967) Composition-volume relationships of metasomatism. Chem Geol 2:47–65

    Article  Google Scholar 

  • Habib MS (1970) Preliminary geological map of the area south-west of Safaga, scale 1:100,000 (latitudes 26° 20′-26° 40′ N and longitudes 33° 30′–33° 50′ E). (Noted in the list of unpublished maps of the Egyptian Geological Survey by El Ramly 1972)

  • Habib ME (1972) Geology of the area west of Safaga, Egypt. Unpublished Ph.D. thesis, University of Assiut, Egypt

  • Halden NM, Hawthorne FC, Campbell JL, Teesdale WJ, Maxwell JA, Higuchi D (1993) Chemical characterization of oscillatory zoning and overgrowths in zircon using 3 MeV μ-PIXE. Can Mineral 31:637–647

    Google Scholar 

  • Hay DC, Dempster TJ (2009) Zircon alteration, formation and preservation in sandstones. Sedimentology 56:2175–2191

    Article  Google Scholar 

  • Herrmann AG (1970) Yttrium and lanthanides. In: Wedepohl KH (ed) Handbook of geochemistry, II/2. Springer-Verlage, Berline, p 39

    Google Scholar 

  • Hoskin PW (2005) Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim Cosmochim Acta 69:637–648

    Article  Google Scholar 

  • Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem 53:27–62

    Article  Google Scholar 

  • Hu FF, Fan HR, Yang JH, Wan YS, Liu DY, Zhai MG, Jin CW (2004) Mineralizing age of the Rushan lode gold deposit in the Jiaodong Peninsula: SHRIMP U–Pb dating on hydrothermal zircon. Chin Sci Bull 49:1629–1636

    Article  Google Scholar 

  • Kamal El-Din GM (2003) Emplacement mechanisms of the Pan-African late-orogenic granites: an example from Um Taghir el Fogani pluton, Qena–Safaga road, Eastern Desert, Egypt. MERC Ain Shams Univ Earth Sci 17:138–156

    Google Scholar 

  • Kamal El-Din GM (2004) Geology and radioelements distribution of the younger granites of Gabal Um Taghir El Tahtani area, Central Eastern Desert, Egypt: implications on uranium mineralization. Delta J Sci 28:31–44

    Google Scholar 

  • Kebede T, Horie K, Hidaka H, Terada K (2007) Zircon ‘microvein’ in peralkaline granitic gneiss, western Ethiopia: origin, SHRIMP U–Pb geochronology and trace element investigations. Chem Geol 242:76–102

    Article  Google Scholar 

  • Kerrich R, King R (1993) Hydrothermal zircon and baddeleyite in Val-d’Or Archean mesothermal gold deposits-characteristics, compositions, and fluid-inclusion properties, with implications for timing of primary gold mineralization. Can J Earth Sci 30:2334–2351

    Article  Google Scholar 

  • Kerrich R, Kyser TK (1994) 100 Ma timing paradox of Archean gold, Abitibi Greenstone Belt (Canada): new evidence from U–Pb and Pb–Pb evaporation ages of hydrothermal zircons. Geology 22:1131–1134

    Article  Google Scholar 

  • Mahdy NA, El Kalioubi BA, Wohlgemuth-Ueberwasser CC, Shalaby MH, El-Afandy AH (2015) Petrogenesis of U- and Mo-bearing A2-type granite of the Gattar batholith in the Arabian Nubian Shield, Northeastern Desert, Egypt: evidence for the favorability of host rocks for the origin of associated ore deposits. Ore Geol Rev 71:57–81

    Article  Google Scholar 

  • Masoud MS, Youssef MM, O’Connor EA (1992) 1:250,000 scale geologic map of the Al Qusayr Quadrangle, Egypt. Egypt. Geol Surv Min Author, Cairo, Egypt

  • McNaughton NJ, Mueller AG, Groves DI (2005) The age of the giant Golden Mile deposit, Kalgoorlie, Western Australia: ion-microprobe zircon and monazite U-Pb geochronology of a synmineralization lamprophyre dike. Econ Geol 100:1427–1440

    Article  Google Scholar 

  • Möller P, Bau M (1993) Rare-earth patterns with positive cerium anomaly in alkaline waters from Lake Van, Turkey. Earth Planet Sci 117:671–676

    Article  Google Scholar 

  • Omran A (2005) Geological, petrochemical studies and potentiality of uranium-thorium occurrences in Gabal Um Taghir El-Tahtani area with emphasis on the granitic rocks, Central Eastern Desert, Egypt. Ph. D Thesis, Fac Sci, Ain Shams Univ, 189pp

  • Omran A (2015) Geology, mineralogy and radioelements potentiality of microgranite dikes to the south of Abu Hadieda area, Northern Eastern Desert, Egypt. Al-Azhar Bull Sci 26:67–89

    Google Scholar 

  • Pelleter E, Cheilletz A, Gasquet D, Mouttaqi A, Annich M, El Hakourd A, Deloule E, Féraude G (2007) Hydrothermal zircons: a tool for ion microprobe U–Pb dating of gold mineralization (Tamlalt-Menhouhou gold deposit—Morocco). Chem Geol 245:135–161

    Article  Google Scholar 

  • Pettke T, Audetat A, Schaltegger U, Heinrich CA (2005) Magmatic-to-hydrothermal crystallization in the W-Sn mineralized Mole Granite (NSW, Australia): part II: evolving zircon and thorite trace element chemistry. Chem Geol 220:191–213

    Article  Google Scholar 

  • Pupin JP (1980) Zircon and granite petrology. Contrib Mineral Petrol 73:207–220

    Article  Google Scholar 

  • Ramezani J, Dunning GR, Wilson MR (2000) Geologic setting, geochemistry of alteration, and U–Pb age of hydrothermal zircon from the Silurian Stog’er Tight gold prospect, Newfoundland Appalachians, Canada. Explor Min Geol 9:171–188

    Article  Google Scholar 

  • Rubin JN, Henry CD, Price JG (1989) Hydrothermal zircons and zircon overgrowths, Sierra Blanca Peaks, Texas. Am Mineral 74:865–869

    Google Scholar 

  • Rubin JN, Henry CD, Price JG (1993) The mobility of zirconium and other immobile elements during hydrothermal alteration. Chem Geol 110:29–47

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. Treatise on Geochemistry 3:1–64

  • Schaltegger U (2007) Hydrothermal zircon. Elements 3:51–79

    Article  Google Scholar 

  • Schmitt AK, Trumbull RB, Dulski P, Emmermann R (2002) Zr-Nb-REE mineralization in peralkaline granites from the Amis complex, Brandberg (Namibia): evidence for magmatic pre-enrichment from melt inclusions. Econ Geol 97:399–413

    Article  Google Scholar 

  • Schwartz MO, Surjono (1990) Greisenization and albitization at the Tikus tin-tungsten deposit, Belitung, Indonesia. Econ Geol 85:691–713

    Article  Google Scholar 

  • Shuo Y, Changqian M, Paul TR (2017) Textures and high field strength elements in hydrothermal magnetite from a skarn system: implications for coupled dissolution-reprecipitation reactions. Am Mineral 102:1045–1056

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. J Geological Society 42:313–345

  • Van Schmuss WR (1995) Natural radioactivity of the crust and mantle. Global earth physics—a handbook on physical constants. AGU Reference Shelf 1:283–291

    Google Scholar 

  • Wang X (1989) Typologie et géochimie du zircon: une approche nouvelle appliquée à la genèse des granites. Thèse du Doctorat, Univ. de Nice, 309pp

  • Wang X, Griffin WL, Chen J (2010) Hf contents and Zr/Hf ratios in granitic zircons. Geochem J 44:65–72

    Article  Google Scholar 

  • Weyer S, Münker C, Rehkämper M, Mezger K (2002) Determination of ultra-low Nb, Ta, Zr and Hf concentrations and the chondritic Zr/Hf and Nb/Ta ratios by isotope dilution analyses with multiple collector ICP-MS. Chem Geol 187:295–313

    Article  Google Scholar 

  • Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol 95:407–419

    Article  Google Scholar 

  • Wood SA (1990a) The aqueous geochemistry of the rare-earth elements and yttrium: 2. Theoretical predictions of speciation in hydrothermal solutions to 350 °C at saturation water vapour pressure. Chem Geol 88:99–125

    Article  Google Scholar 

  • Wood SA (1990b) The aqueous geochemistry of the rare-earth elements and yttrium, 1. Review of available low-temperature data for inorganic REE speciation of natural waters. Chem Geol 82:159–186

    Article  Google Scholar 

  • Worral F, Pearson DG (2001) Water-rock interaction in an acidic mine discharge as indicated by rare earth element patterns. Geochim Cosmochim Acta 65:3027–3040

    Article  Google Scholar 

  • Yang WB, Niu HC, Shan Q, Sun WD, Zhang H, Li NB, Jiang YH, Yu XY (2014) Geochemistry of magmatic and hydrothermal zircon from the highly evolved Baerzhe alkaline granite: implications for Zr–REE–Nb mineralization. Mineral Deposita 49:451–470

    Article  Google Scholar 

  • Zen E (1986) Aluminum enrichment in silicate melts by fractional crystallization: some mineralogic and petrographic constraints. J Petrol 27:1095–1117

    Article  Google Scholar 

  • Zozulya D, Macdonald R, Bagiñski B, Lyalina L, Kartashov P, Dzierzanowski P (2014) Low-temperature Zr-REE-Y-Nb-Th mineralization from El’ozero deposit, Kola Peninsula, NW Russia. 30th International Conference “Ore potential of alkaline, kimberlite and carbonatite magmatism”, At Antalya, Turkey

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amr Abdel Aty Abdel Hamid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel Hamid, A.A., El Sundoly, H.I. & Abu Steet, A.A. Hydrothermal alteration and evolution of Zr-Th-U-REE mineralization in the microgranite of Wadi Ras Abda, North Eastern Desert, Egypt. Arab J Geosci 11, 273 (2018). https://doi.org/10.1007/s12517-018-3623-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-018-3623-2

Keywords

Navigation