Skip to main content
Log in

Sphene and zircon in the Highland Range volcanic sequence (Miocene, southern Nevada, USA): elemental partitioning, phase relations, and influence on evolution of silicic magma

  • Special Issue Accessory Minerals
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Sphene is prominent in Miocene plutonic rocks ranging from diorite to granite in southern Nevada, USA, but it is restricted to rhyolites in coeval volcanic sequences. In the Highland Range volcanic sequence, sphene appears as a phenocryst only in the most evolved rocks (72–77 mass% SiO2; matrix glass 77–78 mass% SiO2). Zr-in-sphene temperatures of crystallization are mostly restricted to 715 and 755°C, in contrast to zircon (710–920°C, Ti-in-zircon thermometry). Sphene rim/glass Kds for rare earth elements are extremely high (La 120, Sm 1200, Gd 1300, Lu 240). Rare earth elements, especially the middle REE (MREE), decrease from centers to rims of sphene phenocrysts along with Zr, demonstrating the effect of progressive sphene fractionation. Whole rocks and glasses have MREE-depleted, U-shaped REE patterns as a consequence of sphene fractionation. Within the co-genetic, sphene-rich Searchlight pluton, only evolved leucogranites show comparable MREE depletion. These results indicate that sphene saturation in intruded and extruded magmas occurred only in highly evolved melts: abundant sphene in less silicic plutonic rocks represents a late-stage ‘bloom’ in fractionated interstitial melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bachl C, Miller CF, Miller JS, Faulds JE (2001) Construction of a pluton: evidence from an exposed cross section of the Searchlight pluton, Eldorado Mountains, Nevada. Geol Soc Am Bull 113:1213

    Article  Google Scholar 

  • Bachmann O, Bergantz GW (2008) Rhyolites and their source mushes across tectonic settings. J Petrol 49:2277–2285. doi:10.1093/petrology/egn068

    Article  Google Scholar 

  • Bachmann O, Dungan MA (2002) Temperature-induced Al -zoning in hornblendes of the Fish Canyon magma, Colorado. Am Mineral 87:1062–1076

    Google Scholar 

  • Bachmann O, Dungan MA, Bussy F (2005) Insights into shallow magmatic processes in large silicic magma bodies: the trace element record in the Fish Canyon magma body, Colorado. Contrib Mineral Petrol 149:338–349

    Article  Google Scholar 

  • Bazar D, Miller JS, Miller CF, Dodge M, Hodge K, Faulds JE (2006) Eruption of deep mushy magma from the Searchlight magma system, southern Nevada (USA); a crystal size distribution and geochemical analysis. Eos Trans AGU 87(52) Fall Meeting Suppl Abstr V51B–1667

  • Blundy J, Cashman K (2001) Ascent-driven crystallisation of dacite magmas at Mount St. Helens, 1980–1986. Contrib Mineral Petrol 140:631–650

    Article  Google Scholar 

  • Blundy J, Wood B (1994) Prediction of crystal-melt partition coefficients from elastic moduli. Nature 372(6505):452–454. doi:10.1038/372452a0

    Google Scholar 

  • Blundy J, Wood B (2003) Partitioning of trace elements between crystals and melts. Earth and Planetary Science Letters 210:383–397. doi:10.1016/s0012-821x(03)00129-8

    Google Scholar 

  • Broska I, Harlov D, Tropper P, Siman P (2007) Formation of magmatic titanite and titanite–ilmenite phase relations during granite alteration in the Tribeč Mountains, WesternCarpathians, Slovakia. Lithos 95:58–71

    Article  Google Scholar 

  • Claiborne LL, Miller CF, Walker BA, Wooden J, Mazdab FK, Bea F (2006) Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: an example from the Spirit Mountain batholith, Nevada. Mineral Mag 70:517

    Article  Google Scholar 

  • Claiborne LL, Miller CF, Flanagan DM, Clynne MA, Wooden JL (2010a) Zircon reveals protracted magma storage and recycling beneath Mount St. Helens. Geology 38:1011

    Article  Google Scholar 

  • Claiborne LL, Miller CF, Wooden J (2010b) Trace element composition of igneous zircon: a thermal and compositional record of the accumulation and evolution of a large silicic batholith. Spirit Mountain, Nevada. Contrib Mineral Petrol 160:511–531. doi:10.1007/s00410-010-0491-5

    Article  Google Scholar 

  • Colombini LL (2009) Mid-Miocene rhyolite sequence, Highland Range, NV: Record of magma evolution and eruption from the Searchlight pluton magma chamber. Master’s Thesis, Vanderbilt University

  • Colombini LL, Gualda GAR, Miller CF, Miller JS, Wooden J, Mazdab FK, Faulds E (2008) Mid-Miocene rhyolite sequence, Highland Range, NV: Record magma evolution and eruption from the Searchlight pluton magma chamber. Eos Trans AGU 89 (53) Fall Meeting Suppl Abstr V21C–2125

  • Colombini LL, Miller CF, Gualda GAR, Wooden JL, Miller JS (2009) Geochemistry and petrogenetic significance of sphene: evidence from the Miocene Highland Range volcanic sequence, southern Nevada. Eos Trans AGU 90 (52) Fall Meeting Suppl Abstr V51A–1637

    Google Scholar 

  • Dodge M, Miller JS, Faulds JE, Miller CF (2005) An erupted record from the Miocene Searchlight pluton, Nevada. GSA Abstracts with Program 37(4):66

    Google Scholar 

  • Faulds JE (1999) Cenozoic geology of the northern Colorado River extensional corridor, southern Nevada and northwest Arizona: Road logs and discussion. Nevada Petroleum Soc Guidebook 1–96

  • Faulds JE, Geissman J, Mawer C (1990) Structural development of a major extensional accommodation zone in the Basin and Range province, northwestern Arizona and southern Nevada: implications for kinematic models of continental extension. GSA Memoir 176:37–76

    Google Scholar 

  • Faulds JE, Geissman J, Shafiqullah M (1992) Implications of paleomagnetic data on Miocene extension near a major accommodation zone in the Basin and Range Province, northwestern Arizona and southern Nevada. Tectonics 11:204–227

    Article  Google Scholar 

  • Faulds JE, Feuerbach D, Reagan M, Metcalf R, Gans P, Walker J (1995) The Mount Perkins block, northwestern Arizona: an exposed cross section of an evolving, preextensional to syextensional magmatic system. J Geophys Res 100:15249–15266

    Article  Google Scholar 

  • Faulds JE, Feuerbach D, Miller CF, Smith E (2001) Cenozoic evolution of the northern Colorado River extensional corridor, southern Nevada and northwest Arizona: Utah. Geol Assoc Publ 30 -Pacific Sect AAPG Publ Guide Book 78:239–271

  • Faulds JE, Bell J, Olsen E (2002a) Geologic map of the Nelson SW quadrangle. US Geolgical Survey Nelson SW 7.5’ Quadrangle

  • Faulds JE, Olson E, Harlan S, McIntosh W (2002b) Miocene extension and fault-related folding in the Highland Range, southern Nevada: a three-dimensional perspective. J Struct Geo 24:861–886

    Article  Google Scholar 

  • Ferry J, Watson E (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol 154:429–437

    Article  Google Scholar 

  • Feuerbach D (1998) Relationships between mid-Miocene volcanism and deformation of the lithosphere in the northern Colorado River extensional corridor. PhD dissertation, University of Iowa

  • Frost B, Chamberlain K, Schumacher J (2000) Sphene (titanite): phase relations and role as a geochronometer. Chem Geol 172:131–145

    Article  Google Scholar 

  • Gans P, Bohrson W (1998) Suppression of volcanism during rapid extension in the Basin and Range province, United States. Science 279:66–68

    Article  Google Scholar 

  • Glazner A, Coleman D, Bartley J (2008) The tenuous connection between high-silica rhyolites and granodiorite plutons. Geology 36(2):183

    Article  Google Scholar 

  • Griffin W, Powell W, Pearson N, O’Reilly S (2008) Appendix A2: GLITTER: Data reduction software for laser ablation ICP-MS, Miner Assoc of Canada Short Course, Vancouver, B.C. 40: 308–311

  • Gualda GAR, Pamukcu AS, Claiborne LL, Rivers ML (2010) Quantitative 3D petrography using x-ray tomography. 3: documenting accessory phases with differential absorption tomography. Geosphere 6:782–792. doi:10.1130/GES00568.1

    Article  Google Scholar 

  • Hanchar JM, van Westrenen W (2007) Rare earth element behavior in zircon-melt systems. Element 3:37–42

    Article  Google Scholar 

  • Harper BE, Miller CF, Koteas GC, Cates NL, Wiebe RA, Lazzareschi DS, Cribb JW (2004) Granites, dynamic magma chamber processes and pluton construction: the Aztec Wash pluton, Eldorado Mountains, Nevada, USA. Trans R Soc Edinburgh Earth Environ Sci 95:277–295

    Article  Google Scholar 

  • Harrison TM, Watson EB (1984) The behavior of apatite during crnstal anatexis: equilibrium and kinetic considerations. Geochim Cosmochim Acta 48:1467–1477

    Article  Google Scholar 

  • Hawkins DP, Bowring SA (1999) U-Pb monazite, xenotime and titanite geochronological constraints on the prograde to post-peak metamorphic thermal history of Paleoproterozoic migmatites from the Grand Canyon, Arizona. Contrib Mineral Petrol 134:150–169

    Article  Google Scholar 

  • Hayden LA, Watson EB (2007) Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon. Earth Planet Sci Lett 258:561–568

    Article  Google Scholar 

  • Hayden LA, Watson EB, Wark DA (2008) A thermobarometer for sphene (titanite). Contrib Mineral Petrol 155(4):529–540

    Article  Google Scholar 

  • Hodge K, Miller CF, Miller JS, Faulds JE (2006) Dike emplacement at the Searchlight, Nevada, volcano-plutonic complex. GSA Abstracts with Program 38(5):95

    Google Scholar 

  • Honn D, Smith E (2008) The mid-Miocene Wilson Ridge Pluton and River Mountains volcanic section, Lake Mead area of Nevada and Arizona; linking a volcanic and plutonic section. GSA Field Guide 11:1–20. doi:10.1130/2008.fld011(01

    Google Scholar 

  • Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar JM, Hoskin PWO (eds) Zircon, Reviews in Mineral and Geochem 53, Miner Soc America, Washington, pp 27–62

  • Howard KA, John BE (1987) Crustal extension along a rooted system of imbricate low angle faults: Colorado River Extensional Corridor, California and Arizona, In: Coward MP et al. (eds) Continental extensional tectonics. Geol Soc London Spec Publ 28:299–311

  • Kelly E, Miller CF, Gualda GARG, Colombini LL, Padilla ADeJ, Cribb JW (2010) Multi-component magma mingling revealed in a rhyolite-dacite-andesite coulee, southern Highland Range (southern Nevada). GSA Abstracts with Program 42:471–472

    Google Scholar 

  • Larsen L, Smith E (1990) Mafic enclaves in the Wilson Ridge Pluton, northwestern Arizona; implications for the generation of a calc-alkaline intermediate pluton in an extensional environment. J Geophys Res 95:17693–17716. doi:10.1029/JB095iB11p17693

    Article  Google Scholar 

  • Luth WC, Jahns RH, Tuttle OF (1964) The granite system at pressures of 4 to 10 kilobars. J Geophys Res 69:759–773

    Article  Google Scholar 

  • Marks MAW, Coulson IM, Schilling J, Jacob DE, Schmitt AK, Markl G (2008) The effect of titanite and other HFSE-rich mineral (Ti-bearing andradite, zircon, eudialyte) fractionation on the geochemical evolution of silicate melts. Chem Geol 257:153–172

    Article  Google Scholar 

  • Mazdab FK (2009) Characterization of flux-grown trace-element-doped titanite using the high-mass-resolution ion microprobe (SHRIMP-RG). Can Mineral 47:813–831

    Article  Google Scholar 

  • Mazdab FK, Wooden JL, Barth A (2007) Trace element variability in titanite from diverse geologic environments. GSA Abstracts with Program 39(6):406

    Google Scholar 

  • Metcalf R (2004) Volcanic–plutonic links, plutons as magma chambers and crust–mantle interaction: a lithospheric scale view of magma systems. Trans R Soc Edinburgh Earth Environ Sci 95:357–374

    Article  Google Scholar 

  • Metcalf R, Smith E, Walker J, Reed R, Gonzales D (1995) Isotopic disequilibrium among commingled hybrid magmas; evidence for a two-stage magma mixing-commingling process in the Mt. Perkins Pluton, Arizona. J Geol 103:509–527

    Article  Google Scholar 

  • Miller CF, Miller JS (2002) Contrasting stratified plutons exposed in tilt blocks, Eldorado Mountains, Colorado River Rift, NV, USA. Lithos 61:209–224

    Article  Google Scholar 

  • Miller CF, Miller JS, Claiborne LL, Gualda G, Peters T (2008) Highly-evolved silicic magmas: volcanic vs. plutonic conundrums. Geochim Cosmochim Acta 72(12):A629

    Google Scholar 

  • Miller CF, Colombini L, Wooden J, Mazdab FK, Gualda G, Claiborne LL, Ayers J (2009) Sphene (titanite) as both monitor and driver of evolution of felsic magma: Miocene volcanic plutonic and rocks of the Colorado River region, NV-AZ, USA. Eos Trans AGU 90 (22) Jt. Assem. Suppl. Abstr V73B-01

  • Miller JS, Matzel JEP, Miller CF, Burgess SD, Miller RB (2007) Zircon growth and recycling during the assembly of large, composite arc plutons. J Volcanology Geotherm Res 167:282–299

    Google Scholar 

  • Moore J, Sisson T (2008) Igneous phenocrystic origin of K feldspar megacrysts in granitic rocks from the Sierra Nevada batholith. Geosphere 4(2):387–400. doi:10.1130/GES00146.1

    Article  Google Scholar 

  • Onuma N, Higuchi H, Wakita H, Nagasawa H (1968) Trace element partition between 2 pyroxenes and host lava. Earth and Planetary Science Letters 5:47–51. doi:10.1016/s0012-821x(68)80010-x

  • Padilla ADeJ, Miller CF, Gualda GAR, Colombini LL, Kelly E, Cribb JW (2010) Death throes of a silicic system: final re-activation of granitic crystal mush and transition to andesitic volcanism, Highland Range, southern Nevada. GSA Abstracts with Program 42(5):472

    Google Scholar 

  • Pamukcu AS (2010) The evolution of the Peach Spring Tuff magmatic system as revealed by accessory mineral textures and compositions. M.Sc. Thesis, Vanderbilt University, 304 p

  • Paterson BA, Stephens WE (1992) Kinetically induced compositional zoning in titanite: implications for accessory-phase/melt partitioning of trace elements. Contrib Mineral Petrol 109:373–385

    Article  Google Scholar 

  • Piccoli P, Candela P, Rivers M (2000) Interpreting magmatic processes from accessory phases: titanite—a small-scale recorder of large-scale processes. Trans R Soc Edinburgh Earth Sci 91:257–267

    Google Scholar 

  • Prowatke S, Klemme S (2005) Effect of melt composition on the partitioning of trace elements between titanite and silicate melt. Geochim Cosmochim Acta 69:695–709

    Article  Google Scholar 

  • Prowatke S, Klemme S (2006) Rare earth element partitioning between titanite and silicate melts: Henry’s law revisited. Geochim Cosmochim Acta 70:4997–5012

    Article  Google Scholar 

  • Reid MR, Vazquez JA, Schmitt AK (2011) Zircon-scale insights into the history of a Supervolcano, Bishop Tuff, Long Valley, California, with implications for the Ti-in-zircon geothermometer. Contrib Mineral Petrol 161:293–311

    Article  Google Scholar 

  • Robinson DM, Miller CF (1999) Record of magma chamber processes preserved in accessory mineral assemblages. Am Mineral 84:1346–1353

    Google Scholar 

  • Rollinson H (1993) Using geochemical data: evaluation, presentation, interpretation. Longman Group, England, 352 p

    Google Scholar 

  • Ruppert R, Faulds JE (1998) Geologic map of the western half of the Fourth of July Mountain Quadrangle, southern Nevada: Nevada Bureau of Mines and Geo Open-File Report 98–7, scale 1:24 000

  • Ruppert RF (1999) Structural and stratigraphic framework of the northern Newberry Mountains, southern Nevada: Assessing the interplay between magmatism and extension. Master’s Thesis, University of Iowa

  • Sano Y, Terada K, Fukuoka T (2002) High mass resolution ion microprobe analysis of rare earth elements in silicate glass, apatite and zircon; lack of matrix dependency. Chem Geol 184:217–230

    Article  Google Scholar 

  • Schaltegger U, Brack P, Ovtcharova M, Peytcheva I, Schoene B, Stracke A, Marocchi M, Bargossi GM (2009) Zircon and titanite recording 1.5 million years of magma accretion, crystallization and initial cooling in a composite pluton (southern Adamello batholith, northern Italy). Earth Planet Sci Lett 286:208–218

    Article  Google Scholar 

  • Tiepolo M, Oberti R, Vannucci R (2002) Trace-element incorporation in titanite: constraints from experimentally determined solid/liquid partition coefficients. Chem Geol 191:105–119

    Article  Google Scholar 

  • Walker BA, Miller CF, Lowery Claiborne LL, Wooden JL, Miller JS (2007) Geology and geochronology of the Spirit Mountain batholith, southern Nevada: implications for timescales and physical processes of batholith construction. J Volcanol Geotherm Res 167:239–262

    Article  Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Article  Google Scholar 

  • Wones R (1989) Significance of the assemblage titanite + magnetite + quartz in granitic rocks. Am Mineral 74:744–749

    Google Scholar 

  • Xirouchakis D, Lindsley D, Andersen D (2001a) Assemblages with titanite (CaTiOSiO4), Ca-Mg-Fe olivine and pyroxenes, Fe-Mg-Ti oxides, and quartz: Part I. Theory. Am Mineral 86:247–253

    Google Scholar 

  • Xirouchakis D, Lindsley D, Frost B (2001b) Assemblages with titanite (CaTiOSiO4), Ca-Mg-Fe olivine and pyroxenes, Fe-Mg-Ti oxides, and quartz: Part II. Application. Am Mineral 86:254–264

    Google Scholar 

Download references

Acknowledgements

We thank Guest Editor Igor Broska, Peter Nabelek, and an anonymous reviewer for helpful comments on the initial version of this paper. Jim Faulds’ outstanding mapping of the Highland Range volcanic sequence and initial guidance in identifying and understanding our field area contributed immeasurably to this project. Frank Mazdab, Ayla Pamukcu, Ashley Bromley, Tamara Carley, Lily Claiborne, Danny Flanagan, Nick Hinz, and Josh Colombini were very helpful with analytical and field aspects of the project. Our research was supported by NSF grants EAR- 0409876 and 0711109.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Calvin F. Miller.

Additional information

Editorial handling: J. Raith

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Elemental concentrations in sphene (ppm), Highland Range silicic volcanic sequence (expanded Table 4, Colombini et al)

ESM 2

Elemental concentrations of zircon (ppm), Highland Range silicic volcanic sequence (expanded Table 5, Colombini et al)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colombini, L.L., Miller, C.F., Gualda, G.A.R. et al. Sphene and zircon in the Highland Range volcanic sequence (Miocene, southern Nevada, USA): elemental partitioning, phase relations, and influence on evolution of silicic magma. Miner Petrol 102, 29 (2011). https://doi.org/10.1007/s00710-011-0177-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00710-011-0177-3

Keywords

Navigation