Skip to main content

Advertisement

Log in

Sulphate incorporation in monazite lattice and dating the cycle of sulphur in metamorphic belts

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Microgeochemical data and transmission electron microscope (TEM) imaging of S-rich monazite crystals demonstrate that S has been incorporated in the lattice of monazite as a clino-anhydrite component via the following exchange Ca2+ + S6+ = REE3+ + P5+, and that it is now partly exsolved in nanoclusters (5–10 nm) of CaSO4. The sample, an osumilite-bearing ultra-high-temperature granulite from Rogaland, Norway, is characterized by complexly patchy zoned monazite crystals. Three chemical domains are distinguished as (1) a sulphate-rich core (0.45–0.72 wt% SO2, Th incorporated as cheralite component), (2) secondary sulphate-bearing domains (SO2 >0.05 wt%, partly clouded with solid inclusions), and (3) late S-free, Y-rich domains (0.8–2.5 wt% Y2O3, Th accommodated as the huttonite component). These three domains yield distinct isotopic U–Pb ages of 1034 ± 6, 1005 ± 7, and 935 ± 7 Ma, respectively. Uranium–Th–Pb EPMA dating independently confirms these ages. This study illustrates that it is possible to discriminate different generations of monazite based on their S contents. From the petrological context, we propose that sulphate-rich monazite reflects high-temperature Fe–sulphide breakdown under oxidizing conditions, coeval with biotite dehydration melting. Monazite may therefore reveal the presence of S in anatectic melts from high-grade terrains at a specific point in time and date S mobilization from a reduced to an oxidized state. This property can be used to investigate the mineralization potential of a given geological event within a larger orogenic framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ancey M, Bastenaire F, Tixier R (1977) Statistical control and optimization of X-ray intensity measurements. J Phys Appl Phys 10:817

    Article  Google Scholar 

  • Aseri AA, Linnen RL, Dong Che X, Thibault Y, Holtz F (2015) Effects of fluorine on the solubilities of Nb, Ta, Zr and Hf minerals in highly fluxed water-saturated haplogranitic melts. Ore Geol Rev 64:736–746

    Article  Google Scholar 

  • Baker DR, Alletti M (2012) Fluid saturation and volatile partitioning between melts and hydrous fluids in crustal magmatic systems: the contribution of experimental measurements and solubility models. Earth Sci Rev 114:298–324

    Article  Google Scholar 

  • Baker DR, Moretti R (2011) Modeling the solubility of sulfur in magmas: a 50 year old geochemical challenge. Rev Miner Geochem 73:167–213

    Article  Google Scholar 

  • Bingen B, Stein H (2003) Molybdenite Re–Os dating of biotite dehydration melting in the Rogaland high-temperature granulites, S Norway. Earth Planet Sci Lett 208:181–195

    Article  Google Scholar 

  • Bingen B, Van Breemen O (1998) U–Pb monazite ages in amphibolite- to granulite-facies orthogneiss reflect hydrous mineral breakdown reactions: Sveconorwegian Province of SW Norway. Contrib Miner Petrol 132:336–353

    Article  Google Scholar 

  • Bingen B, Demaiffe D, Hertogen J (1990) Evolution of feldspars at the amphibolite-granulite-facies transition in augen gneisses (SW Norway): geochemistry and Sr isotopes. Contrib Miner Petrol 105:275–288

    Article  Google Scholar 

  • Bingen B, Davis WJ, Hamilton MA, Engvik AK, Stein HJ, Skar O, Nordgulen O (2008a) Geochronology of high-grade metamorphism in the Sveconorwegian belt, S. Norway: U–Pb, Th–Pb and Re–Os data. Norw J Geol 88:13–42

    Google Scholar 

  • Bingen B, Nordgulen O, Viola G (2008b) A four-phase model for the Sveconorwegian orogeny, SW Scandinavia. Norw J Geol 88:43–72

    Google Scholar 

  • Boger SD, White RW, Schulte B (2012) The importance of iron speciation (Fe2+/Fe3+) in determining mineral assemblages: an example from the high-grade aluminous metapelites of southeastern Madagascar. J Metamorph Geol 30:997–1018

    Article  Google Scholar 

  • Boynton W (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare Earth element geochemistry. Elsevier, Amsterdam, pp 63–114

    Chapter  Google Scholar 

  • Bradbury SE, Williams Q (2009) X-ray diffraction and infrared spectroscopy of monazite-structured CaSO4 at high pressures: implications for shocked anhydrite. J Phys Chem Solids 70:134–141

    Article  Google Scholar 

  • Budzyn B, Harlov DE, Williams ML, Jercinovic MJ (2011) Experimental determination of stability relations between monazite, fluorapatite, allanite, and REE-epidote as a function of pressure, temperature, and fluid composition. Am Miner 96:1547–1567

    Article  Google Scholar 

  • Bulakh AG, Nesterov AR, Zaitsev AN, Pilipiuk AN, Wall F, Kirillov AS (2000) Monazite-(Ce) from late-stage mineral assemblage at the Kandaguba and Vuoriyarvi carbonatite complexes, Kola peninsula, Russia. Neues Jahrb Miner Mon 217–233

  • Chakhmouradian AR, Mitchell RH (1999) Niobian ilmenite, hydroxylapatite and sulfatian monazite: alternative hosts for incompatible elements in calcite kimberlite from Internatsional’naya, Yakutia. Can Miner 37:1177–1189

    Google Scholar 

  • Clemens JD, Vielzeuf D (1987) Constraints on melting and magma production in the crust. Earth Planet Sci Lett 86:287–306

    Article  Google Scholar 

  • Clemente B, Scaillet B, Pichavant M (2004) The solubility of sulphur in hydrous rhyolitic melts. J Petrol 45:2171–2196

    Article  Google Scholar 

  • Coint N, Slagstad T, Roberts NMW, Marker M, Røhr T, Sørensen BE (2015) The Late Mesoproterozoic Sirdal Magmatic Belt, SW Norway: relationships between magmatism and metamorphism and implications for Sveconorwegian orogenesis. Precambrian Res 265:57–77

    Article  Google Scholar 

  • Connolly JAD, Cesare B (1993) C–O–H–S fluid composition and oxygen fugacity in graphictic metapelites. J Metamorph Geol 11:379–388

    Article  Google Scholar 

  • Corfu F (1988) Differential response of U–Pb systems in coexisting accessory minerals, Winnipeg River Subprovince, Canadian Shield: implications for Archean crustal growth and stabilization. Contrib Miner Petrol 98:312–325

    Article  Google Scholar 

  • Cressey G, Wall F, Cressey BA (1999) Differential REE uptake by sector growth of monazite. Miner Mag 63:813–828

    Article  Google Scholar 

  • Crichton WA (2005) Evidence for monazite-, barite-, and AgMnO4 (distorted barite)-type structures of CaSO4 at high pressure and temperature. Am Miner 90:22–27

    Article  Google Scholar 

  • Das K, Dasgupta S, Miura H (2001) Stability of osumilite coexisting with spinel solid solution in metapelitic granulites at high oxygen fugacity. Am Miner 86:1423–1434

    Article  Google Scholar 

  • Didier A, Bosse V, Boulvais P, Bouloton J, Paquette J-L, Montel J-M, Devidal J-L (2013) Disturbance versus preservation of U–Th–Pb ages in monazite during fluid–rock interaction: textural, chemical and isotopic in situ study in microgranites (Velay Dome, France). Contrib Miner Petrol 165:1051–1072

    Article  Google Scholar 

  • Didier A, Bosse V, Bouloton J, Mostefaoui S, Viala M, Paquette JL, Devidal JL, Duhamel R (2015) NanoSIMS mapping and LA–ICP–MS chemical and U–Th–Pb data in monazite from a xenolith enclosed in andesite (Central Slovakia Volcanic Field). Contrib Miner Petrol 170:1–21

    Article  Google Scholar 

  • Diener JFA, Powell R (2010) Influence of ferric iron on the stability of mineral assemblages. J Metamorph Geol 28:599–613

    Article  Google Scholar 

  • Dong Z, White TJ (2004) Calcium–lead fluoro-vanadinite apatites. I. Disequilibrium structures. Acta Crystallogr B 60:138–145

    Article  Google Scholar 

  • Drüppel K, Elsasser L, Brandt S, Gerdes A (2013) Sveconorwegian mid-crustal ultrahigh-temperature metamorphism in Rogaland, Norway: U–Pb LA–ICP–MS geochronology and pseudosections of sapphirine granulites and associated paragneisses. J Petrol 54:305–350

    Article  Google Scholar 

  • Dumond G, Goncalves P, Williams ML, Jercinovic MJ (2015) Monazite as a monitor of melting, garnet growth, and feldspar recrystallization in continental lower crust. J Metamorph Geol 33:735–762

    Article  Google Scholar 

  • Engvik AK, Mezger K, Wortelkamp S, Bast R, Corfu F, Korneliussen A, Ihlen P, Bingen B, Austrheim H (2011) Metasomatism of gabbro—mineral replacement and element mobilization during the Sveconorwegian metamorphic event. J Metamorph Geol 29:399–423

    Article  Google Scholar 

  • Evans KA, Powell R, Holland TJB (2010) Internally consistent data for sulphur-bearing phases and application to the construction of pseudosections for mafic greenschist facies rocks in Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–CO2–O–S–H2O. J Metamorph Geol 28:667–687

    Article  Google Scholar 

  • Falkum T (1982) Geologisk kart over Norge, berggrunnskart Mandal, 1:250000. Norges Geologiske Undersøkelse, Trondheim

    Google Scholar 

  • Ferraris C, White TJ, Plévert J, Wegner R (2005) Nanometric modulation in apatite. Phys Chem Miner 32:485–492

    Article  Google Scholar 

  • Finger F, Krenn E (2007) Three metamorphic monazite generations in a high-pressure rock from the Bohemian Massif and the potentially important role of apatite in stimulating polyphase monazite growth along a PT loop. Lithos 95:103–115

    Article  Google Scholar 

  • Fleet ME (2006) Phase equilibria at high temperatures. Rev Miner Geochem 61:365–419

    Article  Google Scholar 

  • Fletcher IR, McNaughton NJ, Davis WJ, Rasmussen B (2010) Matrix effects and calibration limitations in ion probe U–Pb and Th–Pb dating of monazite. Chem Geol 270:31–44

    Article  Google Scholar 

  • Gasquet D, Bertrand J-M, Paquette J-L, Lehmann J, Ratzov G, De Ascenção Guedes R, Tiepolo M, Boullier A-M, Scaillet S, Nomade S (2010) Miocene to Messinian deformation and hydrothermal activity in a pre-Alpine basement massif of the French western Alps: new U–Th–Pb and argon ages from the Lauzière massif. Bull Soc Geol Fr 181:227–241

    Article  Google Scholar 

  • Gnos E, Janots E, Berger A, Whitehouse M, Walter F, Pettke T, Bergemann C (2015) Age of cleft monazites in the eastern Tauern Window: constraints on crystallization conditions of hydrothermal monazite. Swiss J Geosci 108:55–74

    Article  Google Scholar 

  • Grand’homme A, Janots E, Seydoux-Guillaume AM, Guillaume D, Bosse V, Magnin V (2016) Partial resetting of the U–Th–Pb systems in experimentally altered monazite: nano-scale evidence of incomplete replacement. Geology 44:431–434

    Article  Google Scholar 

  • Harlov DE (1992) Comparative oxygen barometry in granulites, Bamble Sector, SE Norway. J Geology 100:447–464

    Article  Google Scholar 

  • Harlov DE (2000) Titaniferous magnetite–ilmenite thermometry and titaniferous magnetite–ilmenite–orthopyroxene–quartz oxygen barometry in granulite facies gneisses, Bamble Sector, SE Norway: implications for the role of high-grade CO2-rich fluids during granulite genesis. Contrib Miner Petrol 139:180–197

    Article  Google Scholar 

  • Harlov DE, Hansen EC (2005) Oxide and sulphide isograds along a Late Archean, deep-crustal profile in Tamil Nadu, south India. J Metamorph Geol 23:241–259

    Article  Google Scholar 

  • Harlov DE, Newton RC, Hansen EC, Janardhan AS (1997) Oxide and sulfide minerals in highly oxidized, Rb-depleted, Archean granulites of the Shevaroy Hills Massif, South India: oxidation states and the role of metamorphic fluids. J Metamorph Geol 15:701–717

    Article  Google Scholar 

  • Heinrich W, Andrehs G, Franz G (1997) Monazite–xenotime miscibility gap thermometry. I. An empirical calibration. J Metamorph Geol 15:3–16

    Article  Google Scholar 

  • Hermans GAE, Tobi AC, Poorter RP, Maijer C (1975) The high-grade metamorphic Precambrian of the Sirdal-Ørsdal area, Rogaland/Vest-Agder, south-west Norway. Norg Geol Unders B 318:51–74

    Google Scholar 

  • Hetherington CJ, Harlov DE, Budzyń B (2010) Experimental metasomatism of monazite and xenotime: mineral stability, REE mobility and fluid composition. Miner Petrol 99:165–184

    Article  Google Scholar 

  • Holland TJB, Babu E, Waters DJ (1996) Phase relations of osumilite and dehydration melting in pelitic rocks: a simple thermodynamic model for the KFMASH system. Contrib Miner Petrol 124:383–394

    Article  Google Scholar 

  • Jacquemet N, Guillaume D, Zwick A, Pokrovski GS (2014) In situ Raman spectroscopy identification of the S3- ion in S-rich hydrothermal fluids from synthetic fluid inclusions. Am Miner 99:1109–1118

    Article  Google Scholar 

  • Janots E, Engi M, Berger A, Allaz J, Schwarz J-O, Spandler C (2008) Prograde metamorphic sequence of REE minerals in pelitic rocks of the Central Alps: implications for allanite–monazite–xenotime phase relations from 250 to 610 °C. J Metamorph Geol 26:509–526

    Article  Google Scholar 

  • Jansen JBH, Blok RJ, Bos A, Scheelings M (1985) Geothermometry and geobarometry in Rogaland and preliminary results from the Bamble area, S Norway. In: Tobi AC, Touret JLR (eds) The deep Proterozoic crust in the North Atlantic provinces. D. Reidel, Dordrecht, pp 477–497

    Google Scholar 

  • Jercinovic MJ (2005) Analytical perils (and progress) in electron microprobe trace element analysis applied to geochronology: background acquisition, interferences, and beam irradiation effects. Am Miner 90:526–546

    Article  Google Scholar 

  • Kars H, Jansen JBH, Tobi AC, Poorter RP (1980) The metapelitic rocks of the polymetamorphic Precambrian of Rogaland, SW Norway. Contrib Miner Petrol 74:235–244

    Article  Google Scholar 

  • Kelly NM, Harley SL, Möller A (2012) Complexity in the behavior and recrystallization of monazite during high-T metamorphism and fluid infiltration. Chem Geol 322–323:192–208

    Article  Google Scholar 

  • Kelsey DE, Clark C, Hand M (2008) Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: examples using model metapelitic and metapsammitic granulites. J Metamorph Geol 26:199–212

    Article  Google Scholar 

  • Keppler H (1999) Experimental evidence for the source of excess sulfur in explosive volcanic eruptions. Science 284:1652–1654

    Article  Google Scholar 

  • Keppler H (2010) The distribution of sulfur between haplogranitic melts and aqueous fluids. Geochim Cosmochim Acta 74:645–660

    Article  Google Scholar 

  • Kirkland CL, Erickson TM, Johnson TE, Danišík M, Evans NJ, Bourdet J, McDonald BJ (2016) Discriminating prolonged, episodic or disturbed monazite age spectra: an example from the Kalak Nappe Complex, Arctic Norway. Chem Geol 424:96–110

    Article  Google Scholar 

  • Krenn E, Putz H, Finger F, Paar WH (2011) Sulfur-rich monazite with high common Pb in ore-bearing schists from the Schellgaden mining district (Tauern Window, Eastern Alps). Miner Petrol 102:51–62

    Article  Google Scholar 

  • Kukharenko AA, Bulakh AG, Balanova KA (1961) Sulfate-monazite from the Kola Peninsula carbonatites. Zap Vses Miner Obshchest 90:373–381

    Google Scholar 

  • Liu Y, Samaha N-T, Baker DR (2007) Sulfur concentration at sulfide saturation (SCSS) in magmatic silicate melts. Geochim Cosmochim Acta 71:1783–1799

    Article  Google Scholar 

  • Ma YM, Zhou Q, He Z, Li FF, Yang KF, Cui QL, Zou GT (2007) High-pressure and high-temperature study of the phase transition in anhydrite. J Phys Condens Matter 19:425221

    Article  Google Scholar 

  • Maijer CP (1987) The metamorphic envelope of the Rogaland intrusive complex. In: Maijer C, Padget P (eds) The geology of southermost Norway: an excursion guide, 1st edn. Norges Geologiske undersokelse special publication, Trondheim, pp 68–72

    Google Scholar 

  • Maijer C, Andriessen PAM, Hebeda EH, Jansen JBH, Verschure RH (1981) Osumilite, an approximately 970 Ma old high-temperature index mineral of the granulite-facies metamorphism in Rogaland, SW Norway. Geol Mijnbouw 60:267–272

    Google Scholar 

  • Mcfarlane CRM (2006) Palaeoproterozoic evolution of the Challenger Au deposit, South Australia, from monazite geochronology. J Metamorph Geol 24:75–87

    Article  Google Scholar 

  • Métrich N, Mandeville CW (2010) Sulfur in magmas. Elements 6:81–86

    Article  Google Scholar 

  • Migdisov A, Williams-Jones AE, Brugger J, Caporuscio FA (2016) Hydrothermal transport, deposition, and fractionation of the REE: experimental data and thermodynamic calculations. Chem Geol 439:13–42

    Article  Google Scholar 

  • Milke R, Neusser G, Kolzer K, Wunder B (2013) Very little water is necessary to make a dry solid silicate system wet. Geology 41:247–250

    Article  Google Scholar 

  • Möller A, O’brien PJ, Kennedy A, Kröner A (2002) Polyphase zircon in ultrahigh-temperature granulites (Rogaland, SW Norway): constraints for Pb diffusion in zircon. J Metamorph Geol 20:727–740

    Article  Google Scholar 

  • Möller A, O’Brien PJ, Kennedy A, Kröner A (2003) Linking growth episodes of zircon and metamorphic textures to zircon chemistry: an example from the ultrahigh-temperature granulites of Rogaland (SW Norway). Geol Soc Lond Spec Publ 220:65–81

    Article  Google Scholar 

  • Montel J-M, Foret S, Veschambre M, Nicollet C, Provost A (1996) Electron microprobe dating of monazite. Chem Geol 131:37–53

    Article  Google Scholar 

  • Montel J-M, Devidal J-L, Avignant D (2002) X-ray diffraction study of brabantite–monazite solid solution. Chem Geol 191:89–104

    Article  Google Scholar 

  • Muhling JR, Fletcher IR, Rasmussen B (2012) Dating fluid flow and Mississippi Valley type base-metal mineralization in the Paleoproterozoic Earaheedy Basin, Western Australia. Precambrian Res 212–213:75–90

    Article  Google Scholar 

  • Ni Y, Hughes JM, Mariano AN (1995) Crystal chemistry of the monazite and xenotime structures. Am Miner 80:21–26

    Article  Google Scholar 

  • Ondrejka M, Uher P, Pršek J, Ozdín D (2007) Arsenian monazite-(Ce) and xenotime-(Y), REE arsenates and carbonates from the Tisovec-Rejkovo rhyolite, Western Carpathians, Slovakia: composition and substitutions in the (REE, Y)XO4 system (X = P, As, Si, Nb, S). Lithos 95:116–129

    Article  Google Scholar 

  • Paquette JL, Tiepolo M (2007) High resolution (5 μm) U–Th–Pb isotope dating of monazite with excimer laser ablation (ELA)-ICPMS. Chem Geol 240:222–237

    Article  Google Scholar 

  • Parat F, Holtz F (2004) Sulfur partitioning between apatite and melt and effect of sulfur on apatite solubility at oxidizing conditions. Contrib Miner Petrol 147:201–212

    Article  Google Scholar 

  • Parat F, Holtz F, Streck MJ (2011) Sulfur-bearing magmatic accessory minerals. Rev Miner Geochem 73:285–314

    Article  Google Scholar 

  • Prsek J, Ondrejka M, Bacik P, Budzyn B, Uher P (2010) Metamorphic-hydrothermal REE minerals in the Bacuch magnetite deposit, Western Carpathians, Slovakia: (S, Sr)-rich monazite-(Ce) and Nd-dominant hingganite. Can Miner 48:81–94

    Article  Google Scholar 

  • Putnis A (2009) Mineral replacement reactions. Rev Miner Geochem 70:87–124

    Article  Google Scholar 

  • Rasmussen B, Muhling JR (2007) Monazite begets monazite: evidence for dissolution of detrital monazite and reprecipitation of syntectonic monazite during low-grade regional metamorphism. Contrib Miner Petrol 154:675–689

    Article  Google Scholar 

  • Rasmussen B, Sheppard S, Fletcher IR (2006) Testing ore deposit models using in situ U–Pb geochronology of hydrothermal monazite: paleoproterozoic gold mineralization in northern Australia. Geology 34:77–80

    Article  Google Scholar 

  • Rasmussen B, Fletcher IR, Muhling JR, Thorne WS, Broadbent GC (2007) Prolonged history of episodic fluid flow in giant hematite ore bodies: evidence from in situ U–Pb geochronology of hydrothermal xenotime. Earth Planet Sci Lett 258:249–259

    Article  Google Scholar 

  • Satish-Kumar M, Hermann J, Tsunogae T, Osanai Y (2006) Carbonation of Cl-rich scapolite boudins in Skallen, East Antarctica: evidence for changing fluid condition in the continental crust. J Metamorph Geol 24:241–261

    Article  Google Scholar 

  • Schandl ES, Gorton MP (2004) A textural and geochemical guide to the identification of hydrothermal monazite: criteria for selection of samples for dating epigenetic hydrothermal ore deposits. Econ Geol 99:1027–1035

    Article  Google Scholar 

  • Schärer U, Wilmart E, Duchesne J-C (1996) The short duration and anorogenic character of anorthosite magmatism: U–Pb dating of the Rogaland complex, Norway. Earth Planet Sci Lett 139:335–350

    Article  Google Scholar 

  • Seo JH, Guillong M, Heinrich CA (2009) The role of sulfur in the formation of magmatic–hydrothermal copper–gold deposits. Earth Planet Sci Lett 282:323–328

    Article  Google Scholar 

  • Seydoux-Guillaume A-M, Paquette J-L, Wiedenbeck M, Montel J-M, Heinrich W (2002) Experimental resetting of the U–Th–Pb systems in monazite. Chem Geol 191:165–181

    Article  Google Scholar 

  • Seydoux-Guillaume A-M, Goncalves P, Wirth R, Deutsch A (2003) Transmission electron microscope study of polyphase and discordant monazites: site-specific specimen preparation using the focused ion beam technique. Geology 31:973–976

    Article  Google Scholar 

  • Seydoux-Guillaume A-M, Montel J-M, Wirth R, Moine B (2009) Radiation damage in diopside and calcite crystals from uranothorianite inclusions. Chem Geol 261:318–332

    Article  Google Scholar 

  • Seydoux-Guillaume A-M, Montel J-M, Bingen B, Bosse V, de Parseval P, Paquette J-L, Janots E, Wirth R (2012) Low-temperature alteration of monazite: fluid mediated coupled dissolution–precipitation, irradiation damage, and disturbance of the U–Pb and Th–Pb chronometers. Chem Geol 330–331:140–158

    Article  Google Scholar 

  • Shannon R (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  • Simon AC, Ripley EM (2011) The role of magmatic sulfur in the formation of ore deposits. Rev Miner Geochem 73:513–578

    Article  Google Scholar 

  • Spear FS, Pyle JM, Cherniak D (2009) Limitations of chemical dating of monazite. Chem Geol 266:218–230

    Article  Google Scholar 

  • Stacey J, Kramers J (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  • Stein HJ, Markey RJ, Morgan JW et al (2001) The remarkable Re–Os chronometer in molybdenite: how and why it works. Terra Nova 13:479–486

    Article  Google Scholar 

  • Stepanov AS, Hermann J, Rubatto D, Rapp RP (2012) Experimental study of monazite/melt partitioning with implications for the REE, Th and U geochemistry of crustal rocks. Chem Geol 300–301:200–220

    Article  Google Scholar 

  • Suzuki K, Kato T (2008) CHIME dating of monazite, xenotime, zircon and polycrase: protocol, pitfalls and chemical criterion of possibly discordant age data. Gondwana Res 14:569–586

    Article  Google Scholar 

  • Tobi AC, Hermans GAE, Maijer C, Jansen JBH (1985) Metamorphic zoning in the high-grade proterozoic of Rogaland-Vest Agder SW Norway. In: Tobi AC, Touret JLR (eds) The deep Proterozoic crust in the North Atlantic provinces. D. Reidel, Dordrecht, pp 477–497

    Chapter  Google Scholar 

  • Tomkins AG (2010) Windows of metamorphic sulfur liberation in the crust: implications for gold deposit genesis. Geochim Cosmochim Acta 74:3246–3259

    Article  Google Scholar 

  • Tomkins HS, Williams IS, Ellis DJ (2005) In situ U–Pb dating of zircon formed from retrograde garnet breakdown during decompression in Rogaland, SW Norway. J Metamorph Geol 23:201–215

    Article  Google Scholar 

  • Tomkins AG, Pattison DRM, Frost BR (2007) On the initiation of metamorphic sulfide anatexis. J Petrol 48:511–535

    Article  Google Scholar 

  • Touret J (2001) Fluids in metamorphic rocks. Lithos 55:1–25

    Article  Google Scholar 

  • Tracy RJ, Robinson P (1988) Silicate-sulfide-oxide fluid reactions in granulitic-grade pelitic rocks, Central Massachusetts. Am J Sci 288:45–74

    Google Scholar 

  • Van Achterbergh E, Ryan C, Jackson S, Griffin W (2001) Data reduction software for LA–ICP–MS. In: Sylvester P (ed) Laser ablation-ICP–MS in the Earth sciences. Miner Assoc Can 29:239–243

  • Villa IM, Williams ML (2013) Geochronology of metasomatic events. In: Harlov D, Austrheim H (eds) Metasomatism and the chemical transformation OF Rock: the role of fluids in terrestrial and extraterrestrial processes. Springer, Berlin, pp 171–202

    Chapter  Google Scholar 

  • Villa-Vialaneix N, Montel J-M, Seydoux-Guillaume A-M (2013) NiLeDAM: monazite datation for the NiLeDAM team. R package version 0.1. http://niledam.r-forge.r-project.org. Accessed 06 Oct 2016

  • Webster JD, Botcharnikov RE (2011) Distribution of sulfur between melt and fluid in S–O–H–C–Cl-bearing magmatic systems at shallow crustal pressures and temperatures. Rev Miner Geochem 73:247–283

    Article  Google Scholar 

  • Webster JD, Goldoff B, Shimizu N (2011) C-O–H–S fluids and granitic magma: how S partitions and modifies CO2 concentrations of fluid-saturated felsic melt at 200 MPa. Contrib Miner Petrol 162:849–865

    Article  Google Scholar 

  • Westphal M, Schumacher JC, Boschert S (2003) High-temperature metamorphism and the role of magmatic heat sources at the Rogaland anorthosite complex in southwestern Norway. J Petrol 44:1145–1162

    Article  Google Scholar 

  • Whitney J (1984) Fugacities of sulfurous gases in pyrrhotite-bearing silicic magmas. Am Miner 69:69–78

    Google Scholar 

  • Wilke M, Behrens H (1999) The dependence of the partitioning of iron and europium between plagioclase and hydrous tonalitic melt on oxygen fugacity. Contrib Miner Petrol 137:102–114

    Article  Google Scholar 

  • Wilke M, Klimm K, Kohn SC (2011) Spectroscopic studies on sulfur speciation in synthetic and natural glasses. Rev Miner Geochem 73:41–78

    Article  Google Scholar 

  • Williams ML, Jercinovic MJ, Hetherington CJ (2007) Microprobe monazite geochronology: understanding geologic processes by integrating composition and chronology. Annu Rev Earth Planet Sci 35:137–175

    Article  Google Scholar 

Download references

Acknowledgments

We thank Ph. De Parseval and S. Gouy for their technical assistance with the microprobe and J.M. Montel for synthesizing the Pb-free (REE)PO4 crystals used in this study. This work was supported by the CNRS NEEDS program and a PHC Aurora grant (Ministry of Foreign Affairs, Norway and France). The access to the FIB facility was possible thanks to the French RENATECH network. Constructive reviews by D. Harlov, M. Williams and editorial handling by S. Reddy are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonin T. Laurent.

Additional information

Communicated by Steven Reddy.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laurent, A.T., Seydoux-Guillaume, AM., Duchene, S. et al. Sulphate incorporation in monazite lattice and dating the cycle of sulphur in metamorphic belts. Contrib Mineral Petrol 171, 94 (2016). https://doi.org/10.1007/s00410-016-1301-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-016-1301-5

Keywords

Navigation