Skip to main content
Log in

Zircon-scale insights into the history of a Supervolcano, Bishop Tuff, Long Valley, California, with implications for the Ti-in-zircon geothermometer

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

An Erratum to this article was published on 28 August 2010

Abstract

Zircon has the outstanding capacity to record chronological, thermal, and chemical information, including the storage history of zoned silicic magma reservoirs like the one responsible for the Bishop Tuff of eastern California, USA. Our novel ion microprobe approach reveals that Bishop zircon rims with diverse chemical characteristics surround intermediate domains with broadly similar compositions. The highest Y, REE, U, and Th concentrations tend to accompany the largest excesses in Y + REE3+:P beyond what can be explained by xenotime substitution in zircon. Apparent Ti-in-zircon temperatures of <720°C for zircon rims are distinctly lower than most of the range in eruption temperatures, as estimated from FeTi-oxide equilibria and zircon solubility at quench. While permissive of crystallization of zircon at near-solidus conditions, the low Ti-in-zircon temperatures are probably better explained by sources of inaccuracy in the temperature estimates. After apparently nucleating from different melts, zircons from across the Bishop Tuff compositional spectrum may have evolved to broadly similar chemical and thermal conditions and therefore it is possible that there was no significant thermal gradient in the magma reservoir at some stage in its evolution. There is also no compelling evidence for punctuated heat ± chemical influxes during the intermediate stages of zircon growth. Judging by the zircon record, the main volume of the erupted magma evolved normally by secular cooling but the latest erupted portion is characterized by a reversal in chemistry that appears to indicate perfusion of the magma reservoir by—or zircon entrainment in—a less evolved melt from the one in which the zircons had previously resided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aikman AB (2007) Tectonics of the eastern Tethyan Himalaya. Ph.D. thesis. Australian National University

  • Anderson AT Jr, Newman S, Williams SN, Druitt TH, Skirius C, Stolper E (1989) H2O, CO2, Cl, and gas in Plinian and ash-flow Bishop rhyolite. Geology 17:221–225

    Article  Google Scholar 

  • Anderson AT, Davis AM, Lu F (2000) Evolution of Bishop Tuff rhyolitic magma based on melt and magnetite inclusions and zoned phenocrysts. J Petrol 41(3):449–473. doi:10.1093/petrology/41.3.449

    Article  Google Scholar 

  • Bachmann O, Bergantz GW (2003) Rejuvenation of the Fish Canyon magma body: a window into the evolution of large-volume silicic magma systems. Geology 31(9):789–792. doi:10.1130/G19764.1

    Article  Google Scholar 

  • Bachmann O, Bergantz GW (2004) On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. J Petrol 45:1565–1582. doi:10.1093/petrology/egh019

    Article  Google Scholar 

  • Bindeman IN, Valley JW (2002) Oxygen isotope study of the Long Valley magma system, California: isotope thermometry and convection in large silicic magma bodies. Contrib Mineral Petrol 144:185–205. doi:10.1007/s00410-002-0371-8

    Article  Google Scholar 

  • Blundy J, Cashman K (2001) Ascent-driven crystallisation of dacite magmas at Mt. St. Helens, 1980–1986. Contrib Mineral Petrol 140:631–650

    Article  Google Scholar 

  • Blundy JD, Wood BJ (1991) Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts and hydrothermal solutions. Geochim Cosmochim Acta 55:193–209

    Article  Google Scholar 

  • Blundy J, Cashman K, Humphreys M (2006) Magma heating by decompression-driven crystallization beneath andesite volcanoes. Nature 443:76–80. doi:10.1038/nature05100

    Article  Google Scholar 

  • Brice JC (1975) Some thermodynamic aspects of the growth of strained crystals. J Cryst Growth 28:249–253

    Article  Google Scholar 

  • Brown EH, McClelland WC (2000) Pluton emplacement by sheeting and vertical ballooning in part of the southeast Coast Plutonic Complex, British Columbia. Geol Soc Am Bull 112:708–719

    Article  Google Scholar 

  • Cameron KL (1984) Bishop Tuff revisited: new rare earth element data consistent with crystal fractionation. Science 224:1339–1340

    Article  Google Scholar 

  • Caruba R, Iacconi P (1983) Les zircons des pegmatites de Narssârssuk (Groëland)—l’eau et les groupments OH dans les zircons meamictes. Chem Geol 38:75–92

    Article  Google Scholar 

  • Cashman KV, Blundy J (2000) Degassing and crystallization of ascending andesite and dacite. Philos Trans Roy Soc Lond Series A 358:1487–1513

    Article  Google Scholar 

  • Cherniak DJ, Watson EB (2007) Ti diffusion in zircon. Chem Geol 242:470–483. doi:10.1016/j.chemgeo.2007.05.005

    Article  Google Scholar 

  • Cherniak DJ, Hanchar JM, Watson EB (1997a) Diffusion of tetravalent cations in zircon. Contrib Mineral Petrol 127:383–390

    Article  Google Scholar 

  • Cherniak DJ, Hanchar JM, Watson EB (1997b) Rare-earth diffusion in zircon. Chem Geol 134:289–301

    Article  Google Scholar 

  • Claiborne LL, Miller CF, Walker BA, Wooden JL, Mazdab FK, Bea R (2006) Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: an example from the Spirit Mountain batholith, Nevada. Mineral Mag 70(5):517–543. doi:10.1180/0026461067050348

    Article  Google Scholar 

  • Claiborne LL, Miller CF, Wooden JL (2010), Trace element composition of igneous zircon: a thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada. Contrib Mineral Petrol. doi:10.1007/s00410-010-0491-5

  • Coleman DS, Gray W, Glazner AF (2004) Rethinking the emplacement and evolution of zoned plutons: geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology 32:433–436. doi:10.1130/G20220.1

    Article  Google Scholar 

  • Costa F (2008) Residence times of silicic magmas associated with calderas. Develop Volcanol 10:1–55

    Article  Google Scholar 

  • Crowley JL, Schoene B, Bowring SA (2007) U–Pb dating of zircon in the Bishop Tuff at the millennial scale. Geology 35(12):1123–1126. doi:10.1130/G24017A.1

    Article  Google Scholar 

  • Dingwell DB, Romano C, Hess K-U (1996) The effect of water on the viscosity of haplogranitic melt under P-T-X conditions relevant to silicic volcanism. Contrib Mineral Petrol 124(1):19–28. doi:10.1007/s004100050170

    Article  Google Scholar 

  • Dunbar NW, Hervig RL (1992) Petrogenesis and volatile stratigraphy of the Bishop Tuff; evidence from melt inclusion analysis. J Geophys Res B 97:15129–15150

    Article  Google Scholar 

  • Es’kova EM (1959) Geochemistry of Nb and Ta in the nepheline syenite massifs of the Vishnevyie Mountains. Geokhimiya 2:130–139

    Google Scholar 

  • Ferriss EDA, Essene EJ, Becker U (2008) Computational study of the effect of pressure on the Ti-in-zircon geothermometer. Eur J Mineral 20:745–755. doi:10.1127/0935-1221/2008/0020-1860

    Article  Google Scholar 

  • Ferry JM, Watson EB (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol 154(4):429–437. doi:10.1007/s00410-007-0201-0

    Article  Google Scholar 

  • Finch RJ, Hanchar JM (2003) Structure and chemistry of zircon and zircon-group minerals structure and chemistry of zircon and zircon-group minerals. In: Hanchar JM, Hoskin PWO (eds) Zircon Rev Mineral Geochem 53: 1–25. doi: 10.2113/0530001

  • Finch RJ, Hanchar JM, Hoskin PWO, Burns PC (2001) Rare-earth elements in synthetic zircon: part 2. A single-crystal X-ray study of xenotime substitution. Am Mineral 86:681–689

    Google Scholar 

  • Fu B, Page FZ, Cavosie AJ, Fournelle J, Kita NK, Lackey JS, Wilde SA, Valley JW (2008) Ti-in-zircon thermometry: applications and limitations. Contrib Mineral Petrol 156:197–215. doi:10.1007/s00410-008-0281-5

    Article  Google Scholar 

  • Ghiorso MS, Evans BW (2008) Thermodynamics of rhombohedral oxide solid solutions and a revision of the Fe-Ti- two-oxide geothermometer and oxygen-barometer. Am J Sci 308:957–1039. doi:10.2475/09.2008.01

    Article  Google Scholar 

  • Glazner AF, Bartley JM, Coleman DS, Gray W, Taylor RZ (2004) Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today 14:4–11

    Article  Google Scholar 

  • Halden NM, Hawthorne FC, Campbell JL, Teesdale WJ, Maxwell JA, Higuchi D (1993) Chemical characterization of oscillatory zoning in overgrowths in zircon using 3 MeV l-PIXE. Can Mineral 31:637–647

    Google Scholar 

  • Hanchar JM, Hoskin PWO (eds) (2003) Zircon. Reviews in mineralogy and geochemistry, vol 53. Mineralogical Society of America/Geochemical Society, Washington, p 500

    Google Scholar 

  • Hanchar JM, van Westrenen W (2007) Rare earth element behavior in zircon-melt systems. Elements 3:37–42. doi:10.2113/gselements.3.1.37

    Article  Google Scholar 

  • Hanchar JM, Finch RJ, Hoskin PWO, Watson EB, Cherniak DJ, Mariano AN (2001) Rare earth elements in synthetic zircon: part 1. Synthesis, and rare earth element and phosphorus doping. Am Mineral 86:667–680

    Google Scholar 

  • Hanson RB, Glazner AF (1995) Thermal requirements for extensional emplacement of granitoids. Geology 23:213–216

    Article  Google Scholar 

  • Harrison TM, Schmitt AK (2007) High sensitivity mapping of Ti distributions in Hadean zircons. Earth Planet Sci Lett 261(1–2):9–19. doi:10.1016/j.epsl.2007.05.016

    Article  Google Scholar 

  • Harrison TM, Watson EB (1983) Kinetics of zircon dissolution and zirconium diffusion in granitic melts of variable water content. Contrib Mineral Petrol 84:66–72

    Article  Google Scholar 

  • Hayden LA, Watson EB, Wark DA (2007) A thermobarometer for sphene (titanite). Contrib Mineral Petrol 155(4):529–540. doi:10.1007/s00410-007-0256-y

    Article  Google Scholar 

  • Hiess J, Nutman AP, Bennett VC, Holden P (2008) Ti-in-zircon thermometry applied to contrasting Archean metamorphic and igneous systems. Chem Geol 247:323–338. doi:10.1016/j.chemgeo.2007.10.012

    Article  Google Scholar 

  • Hildreth EW (1977) The magma chamber of the Bishop Tuff: gradients in temperature, pressure and composition. University of California, Berkeley, p 328

    Google Scholar 

  • Hildreth W (1979) The Bishop Tuff: evidence for the origin of compositional zonation in silicic magma chambers. In: Chapin CE, Elston WE (eds) Ash-flow tuffs. Geol Soc Am Spec Pap 180:43–75

  • Hildreth W, Wilson CJN (2007) Compositional zoning of the Bishop Tuff. J Petrol 48(5):951–999. doi:10.1093/petrology/egm007

    Article  Google Scholar 

  • Hofmann AE, Valley JW, Watson EB, Cavosie AJ, Eiler JM (2009) Sub-micron scale distributions of trace elements in zircon. Contrib Mineral Petrol. doi:10.1007/s00410-009-0385-6

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metam Geol 16:309–343

    Article  Google Scholar 

  • Hoshino M, Kimata M, Shimizu M, Nishida N (2007) Minor-element systematics of fluorapatite and zircon inclusions in allanite-(Ce) of felsic volcanic rocks from the orogenic belts: implications of the origin of their host magmas. Canad Mineral 45:137–1353. doi:10.3749/canmin.45.6.1337

    Google Scholar 

  • Hoskin PWO (2000) Patterns of chaos: fractal statistics and the oscillatory chemistry of zircon. Geochim Cosmochim Acta 64:1905–1923. doi:10.1016/S0016-7037(00)00330-6

    Article  Google Scholar 

  • Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar JM, Hoskin PWO (eds) Zircon Rev Mineral Geochem 53:27–62

  • Hoskin PWO, Kinny PD, Wyborn D, Chappell BW (2000) Identifying accessory mineral saturation during differentiation in granitoid magmas: an integrated approach. J Petrol 41:1365–1396. doi:10.1093/petrology/41.9.1365

    Article  Google Scholar 

  • Kuiper KF, Deino A, Hilgen FJ, Krijgsman W, Renne PR, Wijbrans JR (2008) Synchronizing rock clocks of earth history. Science 320:500–504. doi:10.1126/science.1154339

    Article  Google Scholar 

  • Linnen RL, Keppler H (2002) Melt composition control of Zr/Hf fractionation in magmatic processes. Geochim Cosmochim Acta 66:3293–3301

    Article  Google Scholar 

  • Lipman PW (2007) Incremental assembly and prolonged consolidation of Cordilleran magma chambers: Evidence from the Southern Rocky Mountain volcanic field. Geosphere 3. doi: 10.1130/GES00061.1

  • Luo Y, Ayers JC (2009) Experimental measurements of zircon/melt trace-element partition coefficients. Geochim Cosmochim Acta 73:3656–3679. doi:10.1016/j.gca.2009.03.027

    Article  Google Scholar 

  • Mahan KH, Bartley JM, Coleman DS, Glazner AF, Carl BS (2003) Sheeted intrusion of the synkinematic McDoogle pluton, Sierra Nevada, California. Geol Soc Am Bull 115:1570–1582

    Article  Google Scholar 

  • Mahood GA (1990) Second reply to comment of Sparks RSJ, Huppert HE, Wilson CJN on ‘‘Evidence for long residence times of rhyolitic magma in the Long Valley magmatic system: the isotopic record in the precaldera lavas of Glass Mountain’’. Earth Planet Sci Lett 99:395–399

    Article  Google Scholar 

  • Mahood GA, Cornejo PC (1992) Evidence for ascent of differentiated liquids in a silicic magma chamber found in granitic pluton. R Soc Edinburgh Trans, Earth Sci 83:63–69

    Google Scholar 

  • Mahood GA, Hildreth EW (1983) Large partition coefficients for trace elements in high-silica rhyolites. Geochim Cosmochim Acta 47:11–30

    Article  Google Scholar 

  • McNulty BA, Tobisch OT, Cruden AR, Gilder S (2000) Multistage emplacement of the Mount Givens pluton, central Sierra Nevada batholith, California. Geol Soc Am Bull 112:119–135

    Article  Google Scholar 

  • Michael PJ (1983) Chemical differentiation of the Bishop Tuff and other high-silica magmas through crystallization processes. Geology 11:1–34

    Google Scholar 

  • Miller CF, Miller JS (2002) Contrasting stratified plutons exposed in tilt blocks, Eldorado Mountains, Colorado River Rift, NV, USA. Lithos 61:209–224

    Article  Google Scholar 

  • Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1995) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandard Newsl 21:115–144

    Article  Google Scholar 

  • Peppard BT, Steele IM, Davis AM, Wallace PJ, Anderson AT (2001) Zoned quartz phenocrysts from the rhyolitic Bishop Tuff. Am Mineral 86(9):1034–1052

    Google Scholar 

  • Reid MR (2008) How long does it take to supersize an eruption? Elements 4(1):23–28. doi:10.2113/GSELEMENTS.4.1.23

    Article  Google Scholar 

  • Reid MR, Coath CD (2000) In situ U–Pb ages of zircons from the Bishop Tuff: no evidence for long crystal residence times. Geology 28(5):443–446. doi:10.1130/0091-7613(2000)

    Article  Google Scholar 

  • Reid MR, Vazquez JA, Simon JI, Schmitt A (2006) Zircon geothermometry and the Bishop Tuff: evidence for remobilization of crystal mush or for temperature-independent Ti partitioning? Eos Trans AGU AGU 87:V51E–1712

    Google Scholar 

  • Robinson D, Miller C (1999) Record of magma chamber processes preserved in accessory mineral assemblages, Aztec Wash pluton, Nevada. Am Mineral 84:1346–1353

    Google Scholar 

  • Rubatto D, Hermann J (2007) Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chem Geol 241:38–61. doi:10.1016/j.chemgeo.2007.01.027

    Article  Google Scholar 

  • Sano Y, Terada K, Fukuoka T (2002) High mass resolution ion microprobe analysis of rare earth elements in silicate glass, apatite and zircon: lack of matrix dependency. Chem Geol 184:217–230

    Article  Google Scholar 

  • Scaillet B, Holtz F, Pichavant M (1998) Phase equilibrium constraints on the viscosity of silicic magmas 1. Volcanic–plutonic comparison. J Geophys Res 103:27257–27266

    Article  Google Scholar 

  • Schmitt AK, Vazquez JA (2006) Alteration and remelting of nascent oceanic crust during continental rupture: Evidence from zircon geochemistry of rhyolites and xenoliths from the Salton Trough California. Earth Planet Sci Lett 252(3–4):260–274. doi:10.1016/j.epsl.2006.09.041

    Article  Google Scholar 

  • Simakin AG, Bindeman IN (2008) Evolution of crystal sizes in the series of dissolution and precipitation events in open magma systems. J Volc Geotherm Res 177:997–1010. doi:10.1016/j.jvolgeores.2008.07.012

    Article  Google Scholar 

  • Simon JI, Reid MR (2005) The pace of rhyolite differentiation and storage in an ‘archetypical’ silicic magma system, Long Valley, Contrib Mineral Petrol California. Earth Planet Sci Lett 235(1–2):123–140. doi:10.1016/j.epsl.2005.03.013

    Article  Google Scholar 

  • Simon JI, Renne PR, Mundil R (2008) Implications of pre-eruptive magmatic histories of zircons for U–Pb geochronology of silicic extrusions. Earth Planet Sci Lett 266(1–2):182–194. doi:10.1016/j.epsl.2007.11.014

    Article  Google Scholar 

  • Sisson TW, Bacon CR (1999) Gas-driven filter pressing in magmas. Geology 27:613–616

    Article  Google Scholar 

  • Speer JA (1982) Zircon. In: Ribbe PH (ed) Orthosilicates rev mineral, vol 5. Mineral Soc Am, Washington, pp 67–112

  • Thomas JB, Watson EB, Spear FS, Shemella PT, Nayak SK, Lanzirotti A (2010) TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz. Contrib Mineral Petrol (in press). doi: 10.1007/s00410-010-0505-3

  • Vazquez JA, Reid MR (2004) Probing the accumulation history of the voluminous Toba magma. Science 305(5686):991–994. doi:10.1126/science.1096994

    Article  Google Scholar 

  • Vazquez JA, Kyriazis SF, Reid MR, Sehler RC, Ramos FC (2009) Thermochemical evolution of young rhyolites at Yellowstone: evidence for a cooling but periodically replenished postcaldera magma reservoir. J Volc Geotherm Res 188:186–196. doi:10.1016/j.jvolgeores.2008.11.030

    Article  Google Scholar 

  • Wallace PJ, Anderson AT Jr, Davis AM (1995) Quantification of pre-eruptive exsolved gas contents in silicic magmas. Nature 377:612–616

    Article  Google Scholar 

  • Wallace PJ, Anderson AT, Davis AM (1999) Gradients in H2O, CO2, and exsolved gas in a large-volume silicic magma system: interpreting the record preserved in melt inclusions from the Bishop Tuff. J Geophys Res Solid Earth 104(B9):20097–20122. doi:10.1029/1999JB900207

    Article  Google Scholar 

  • Wark DA, Watson EB (2006) TitaniQ: a titanium-in-quartz geothermometer. Contrib Mineral Petrol 152:743–754. doi:10.1007/s00410-006-0132-1

    Article  Google Scholar 

  • Wark DA, Hildreth W, Spear FS, Cherniak DJ, Watson EB (2007) Pre-eruption recharge of the Bishop magma system. Geology 35(3):235–238. doi:10.1130/G23316A.1

    Article  Google Scholar 

  • Watson EB (1980) Some experimentally determined zircon-liquid partition-coefficients for the rare-Earth elements. Geochim Cosmochim Acta 44:895–897

    Article  Google Scholar 

  • Watson EB (1996) Surface enrichment and trace-element uptake during crystal growth. Geochim Cosmochim Acta 60(24):5013–5020. doi:10.1016/S0016-7037(96)00299-2

    Article  Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited—temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64(2):295–304. doi:10.10160012-821X(83)90211-X

    Article  Google Scholar 

  • Watson EB, Harrison TM (2005) Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 308(5723):841–844. doi:10.1126/science.1110873

    Article  Google Scholar 

  • Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol 151:413–433. doi:10.1007/s00410-006-0068-5

    Article  Google Scholar 

  • Weinberg R (2006) Melt segregation structures in granitic plutons. Geology 34(4):305–308. doi:10.1130/G22406.1

    Article  Google Scholar 

  • Wiebe RA, Collins WJ (1998) Depositional features and stratigraphic sections in granitic plutons: implications for the emplacement and crystallization of granitic magma. J Struct Geol 20:1273–1289

    Article  Google Scholar 

  • Wiebe RA, Manon MR, Hawkins DP, McDonough WF (2004) Late stage mafic injection and thermal rejuvenation of the Vinalhaven granite, coastal Maine. J Petrol 45:2133–2153. doi:10.1093/petrology/egh050

    Article  Google Scholar 

  • Wiedenbeck M, Alle P, Corfu F, Griffin WL, Meier M, Oberli F, Vonquadt A, Roddick JC, Speigel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace-element and REE analyses. Geostand Newsl 19(1):1–23. doi:10.1111/j.1751-908X.1995.tb00147.x

    Article  Google Scholar 

  • Wiedenbeck M, Hanchar JM, Peck WH, Sylvester P, Valley J, Whitehouse M, Kronz A, Morishita Y, Nasdala L (2004) Further characterization of the 91500 zircon crystal. Geostand Geoanal Res 28:9–39

    Article  Google Scholar 

  • Wilson CJN, Hildreth WH (1997) The Bishop Tuff; new insights from eruptive stratigraphy. J Geol 105:407–439

    Article  Google Scholar 

  • Wood BJ, Blundy JD (1997) A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt. Contrib Mineral Petrol 129:166–181

    Article  Google Scholar 

  • Yoshinobu AS, Okaya DA, Paterson SR (1998) Modeling the thermal evolution of fault-controlled magma emplacement models: implications for the solidification of granitoid plutons. J Struct Geol 20:1205–1218

    Article  Google Scholar 

Download references

Acknowledgments

We thank reviewers John Hanchar and Calvin Miller for insights that improved this paper. We thank Bruce Watson and Jay Thomas of Rensselaer Polytechnic Institute for sharing ideas and insights into the Ti-in-zircon and Ti-in-quartz thermometers and for a split of their Bishop Tuff zircon separate. Reid thanks Janne Blichert-Toft, Francis Albarede, and the other professionals and students at the École Normale Supérieure in Lyon, France, for their support—scientific and morale—while this work was completed. John Ferry of Johns Hopkins University provided his summary of zircon calibration data. Robert C. Newton at University of California Los Angeles is thanked for providing ideas and guidance to improve Ti activity calculations. The ion microprobe facility at the University of California, Los Angeles, is partly supported by a grant from the Instrumentation and Facilities Program, Division of Earth Sciences, National Science Foundation. The support of National Science Foundation grants EAR-0538309 and EAR-0538113 made this work possible and is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary R. Reid.

Additional information

Communicated by T. L. Grove.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00410-010-0564-5

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reid, M.R., Vazquez, J.A. & Schmitt, A.K. Zircon-scale insights into the history of a Supervolcano, Bishop Tuff, Long Valley, California, with implications for the Ti-in-zircon geothermometer. Contrib Mineral Petrol 161, 293–311 (2011). https://doi.org/10.1007/s00410-010-0532-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-010-0532-0

Keywords

Navigation