Skip to main content
Log in

Chemotaxonomic and evolutionary perspectives of Bryophyta based on multivariate analysis of fatty acid fingerprints of Eastern Himalayan mosses

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Bryophyta comprises one of the earliest lineages of land plants that had implemented remarkable innovations to their lipid metabolic systems for successful adaptation to terrestrial habitat. This study presents a comprehensive investigation of fatty acid profiles of mosses from Eastern Himalayas with an aim to trace their chemotaxonomic and evolutionary implications. Fatty acid compositions of 40 random mosses belonging to major families of Bryophyta were explored by gas chromatographic analysis. A diverse array of saturated, monounsaturated and polyunsaturated fatty acids including rare acetylenic fatty acids were detected. Hexadecanoic acid (C16:0), 9,12 (Z,Z)-octadecadienoic acid (C18:2n6) and 9,12,15 (Z,Z,Z)-octadecatrienoic acid (C18:3n3) were the predominant fatty acids in all the mosses. However, quantitative variation of C20 polyunsaturated fatty acids (PUFAs), specifically 5,8,11,14 (Z,Z,Z,Z)-eicosatetraenoic acid (C20:4n6), among the investigated mosses was the most prominent outcome. The diplolepidous members of Bryidae, especially the mosses of Hypnales, Bryales and Bartramiales contained higher amount of C20 PUFAs compared with the haplolepidous orders. Principal component analyses based on individual fatty acids and other related parameters validated C20:4n6 content and the ratio of C20:4n6/C18:2n6 as the apparent chemotaxonomic discriminants. The prevalent notion of considering 9,12,15-octadecatrien-6-ynoic acid (C18:4a) as the chemomarker of Dicranaceae has also been challenged, since the compound was detected not only in different families of Dicranales, but also in a Pottiales member, Leptodontium viticulosoides. Therefore, an ensemble of fatty acids instead of a single one can be considered as the chemical signature for taxonomic interpretation which may also be vital from an evolutionary standpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated and analyzed are presented in Supplementary Tables. Raw data can be made available on reasonable request.

Code availability

Not applicable.

Abbreviations

AA:

Arachidonic acid (C20:4n6)

AFA:

Acetylenic fatty acid(s)

FA:

Fatty acid(s)

FAME:

Fatty acid methyl ester(s)

GC-MS:

Gas chromatography mass spectrometry

GC-FID:

Gas chromatography flame ionization detector

HP-TLC:

High-performance thin layer chromatography

LA:

Linoleic acid (C18:2n6)

MUFA:

Monounsaturated fatty acid(s)

PA:

Palmitic acid

PCA:

Principal component analysis

PUFA:

Polyunsaturated fatty acid(s)

SFA:

Saturated fatty acid(s)

References

  • Anderson B, Anderson WH, Chipault JR, Ellison EC, Fenton SW, Gellerman JL, Hawkins JM, Schlenk H (1974) 9,12,15-Octadecatrien-6-ynoic acid: new acetylenic acid from mosses. Lipids 9:506–511

    Article  Google Scholar 

  • Anderson WH, Gellerman JL, Schlenk H (1975) Acetylenic acids from mosses. Lipids 10:501–502

    Article  CAS  PubMed  Google Scholar 

  • AOCS Lipid Library (2013) Methyl esters of fatty acids-archive of mass spectra. http://lipidlibrary.aocs.org/ms/arch_me/index.htm

  • Asakawa Y, Ludwiczuk A, Nagashima F (2013) Chemical constituents of bryophytes: bio- and chemical diversity, biological activity and chemosystematics. In: Kinghorn DA, Falk H, Kobayashi J (eds) Progress in the chemistry of organic natural products, vol 95. Springer, Vienna, pp 1–760

    Google Scholar 

  • Bai XW, Song CH, You JM, Sun ZW, Fu YY, Liang G (2010) Determination of fatty acids (C1–C10) from Bryophytes and Pteridophytes. Chromatographia 71:1125–1129

    Article  CAS  Google Scholar 

  • Beike AK, Jaeger C, Zink F, Decker EL, Reski R (2014) High contents of very long-chain polyunsaturated fatty acids in different moss species. Plant Cell Rep 33:245–254

    Article  CAS  PubMed  Google Scholar 

  • Beutelmann P, Stymne S (1995) An uncommon pathway in the biosynthesis of acetylenic fatty acids in mosses. In: Kader JC, Mazliak P (Eds) Plant lipid metabolism. Kluwer Acad Publ, Amsterdam, pp 546–548

  • Biswas-Raha A, Mitra S, Poddar-Sarkar M (2019) Ecological impact on fatty acid composition of mosses from two biodiversity hotspots of Hungary and India. Proc Natl Acad. Sci, India, Sect B Biol Sci 90:55–61

    Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Brodribb TJ, Carriqui M, Delzon S, McAdam SAM, Holbrook NM (2020) Advanced vascular function discovered in a widespread moss. Nat Plants 6:273–279

    Article  CAS  PubMed  Google Scholar 

  • Buck WR, Goffinet B (2000) Morphology and classification of the mosses. In: Shaw AJ, Goffinet B (Eds) Bryophyte Biology. Cambridge Univ Press, Cambridge, pp 71–123

  • Cayan F, Deveci E, Tel-Cayan G, Duru ME (2020) Chemometric approaches for the characterization of the fatty acid composition of seventeen mushroom species. Anal Lett 53:2784–2798

    Article  CAS  Google Scholar 

  • Christie WW, Robertson GW, McRoberts WC, Hamilton JTG (2000) Mass spectrometry of the 4,4-dimethyloxazoline derivatives of isomeric octadecenoates (monoenes). Eur J Lipid Sci Technol 102:23–29

    Article  CAS  Google Scholar 

  • Dabbou S, Chaieb I, Rjiba I, Issaoui M, Echbili A, Nakbi A, Gazzah N, Hammami M (2012) Multivariate data analysis of fatty acid content in the classification of olive oils developed through controlled crossbreeding. J Am Oil Chem Soc 89:667–674

    Article  CAS  Google Scholar 

  • Dembitsky VM (1993) Lipids of bryophytes. Prog Lipid Res 32:281–356

    Article  CAS  PubMed  Google Scholar 

  • Dembitsky VM, Rezanka T (1994) Acetylenic fatty acids of the Dicranaceae. Phytochemistry 36:685–689

    Article  CAS  Google Scholar 

  • Dembitsky VM, Rezanka T (1995) Distribution of acetylenic acids and polar lipids in some aquatic bryophytes. Phytochemistry 40:93–97

    Article  CAS  Google Scholar 

  • Diedrich M, Henschel K (1991) The natural occurrence of unusual fatty acids Part 3. Acetylenic Fatty Acids Nahrung 35:193–202

    CAS  Google Scholar 

  • Dogru-Koca A, Ozcan T, Yildirimli S (2016) Chemotaxonomic perspectives of the Paracaryum (Cynoglossene, Boraginaceae) taxa based on fruit fatty acid composition. Phytochemistry 131:100–106

    Article  CAS  PubMed  Google Scholar 

  • Gangulee HC (1969–1980) Mosses of Eastern India and adjacent regions: a monograph, Fascicle 1–6. Eastend Printer, Calcutta, India

  • Gangulee HC (1985) Handbook of Indian mosses. Amerind Publ Com Pvt Ltd, New Delhi

    Google Scholar 

  • Garcia R, Pistorius D, Stadler M, Muller R (2011) Fatty acid related phylogeny of myxobacteria as an approach to discover polyunsaturated omega-3/6 fatty acids. J Bacteriol 193:1930–1942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gellerman JL, Anderson WH, Schlenk H (1972) Highly unsaturated lipids of Mnium, Polytrichum, Marchantia and Matteuccia. Bryologist 75:550–557

    Article  CAS  Google Scholar 

  • Gellerman JL, Anderson WH, Schlenk H (1975) Synthesis and analysis of phytyl and phytenoyl wax esters. Lipids 10:656–661

    Article  CAS  PubMed  Google Scholar 

  • Goffinet B, Buck WR (2004) Systematics of Bryophyta (mosses): from molecules to revised classification. Monographs in Syst Bot, Missouri Bot Gard 98:205–239

    Google Scholar 

  • Goffinet B, Buck WR (2018) The evolution of body form in bryophytes. Ann Plant Rev Online. https://doi.org/10.1002/978/1119312994.apr0487

    Article  Google Scholar 

  • Goss R, Wilhelm C (2009) Lipids in algae, lichens and mosses. In: Wada H, Murata N (Eds) Lipids in photosynthesis: essential and regulatory functions. Springer, UK, pp 117–137

  • Guil-Guerrero JL, Gomez-Mercado F, Garcia-Moroto F, Campra-Madrid P (2000) Occurrence and characterization of oils rich in γ-linolenic acid Part (I): Echium seeds from Macaronesia. Phytochemistry 53:451–456

    Article  CAS  PubMed  Google Scholar 

  • Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Paleontol Electron 4, 9pp

  • Hansen CE, Rossi P (1990) Arachidonic and eicosapentaenoic acids in Brachytheciaceae and Hypnaceae moss species. Phytochemistry 29:3749–3754

    Article  CAS  Google Scholar 

  • Harwood JL (1996) Recent advances in the biosynthesis of plant fatty acids. Biochim Biophys Acta (BBA)- Lipids Lipid Met 1301:7–56

    Article  Google Scholar 

  • Huneck S (1983) Chemistry and biochemistry of bryophytes. In: Schuster RM (ed) New manual of bryology, vol 1. Hattori Bot Lab, Nichinan, pp 1–116

    Google Scholar 

  • Iba K (2002) Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Ann Rev Plant Biol 53:225–245

    Article  CAS  Google Scholar 

  • Jobson JD (1992) Applied multivariate data analysis, vol. 2: categorical and multivariate methods. Springer, New York, p 156

  • Kaneda T (1991) Iso- and anteiso-fatty acids in bacteria: biosynthesis, function and taxonomic significance. Microbiol Rev 55:288–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karunen P (1982) Possible evolutionary significance of galacto-lipid fatty acid in bryophyte. J Hattori Bot Lab 53:255–269

    CAS  Google Scholar 

  • Karunen P (1990) The acyl lipids of bryophytes. In: Zinsmeister HD, Mues R (eds) Bryophytes, their chemistry and chemical taxonomy. Clarendon Press, Oxford, pp 121–141

    Google Scholar 

  • Kohn G, Demmerle S, Vandekerkhove O, Hartmenn E, Beutelmann P (1987) Distribution and chemotaxonomic significance of acetylenic fatty acids in mosses of the Dicranales. Phytochemistry 26:2271–2275

    Article  CAS  Google Scholar 

  • Koskimies S, Nyberg H (1991) Effects of temperature and light on the glycolipids of Sphagnum fimbriatum. Phytochemistry 30:2529–2536

    Article  Google Scholar 

  • Li Y, Eiriksson FF, Thorsteinsdottir M, Simonsen HT (2019) Valuable fatty acids in Bryophytes—production, biosynthesis, analysis and applications. Plants 8:524

    Article  CAS  Google Scholar 

  • Liu Y, Johnson MG, Cox CJ, Medina R, Devos N, Vanderpoorten A, Hedenas L, Bell NE, Shevock JR, Aguero B, Wickett NJ, Shaw J, Goffinet B (2019) Resolution of the ordinal phylogeny of mosses using targeted exons from organellar and nuclear genomes. Nat Commun 10:1485. https://doi.org/10.1038/s41467-019-09454-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikami K, Hartmann E (2004) Lipid metabolism in mosses. In: Wood AJ, Oliver MJ, Cove DJ (eds) New frontiers in bryology: physiology, molecular biology and functional genomics. Kluwer Academic Publishers, London, pp 133–156

    Chapter  Google Scholar 

  • Mitra S (2017) High content of Dicranin in Anisothecium spirale (Mitt.) Broth., a moss from Eastern Himalayas and its chemotaxonomic significance. Lipids 52:173–178

    Article  CAS  PubMed  Google Scholar 

  • Mitra S, Burger BV, Poddar Sarkar M (2013) Headspace volatile oxylipins of Eastern Himalayan Moss Cyathophorella adiantum extracted by sample enrichment probe. Lipids 48:997–1004

    Article  CAS  PubMed  Google Scholar 

  • Mitra S, Burger BV, Poddar Sarkar M (2017) Comparison of headspace-oxylipin-volatilomes of some Eastern Himalayan mosses extracted by sample enrichment probe and analysed by gas chromatography-mass spectrometry. Protoplasma 254:1115–1126

    Article  CAS  PubMed  Google Scholar 

  • Oliveira da Silva AC, Morais de Oliveira AF, Cursino dos Santos DYA, Izídio da Silva S (2010) An approach to chemotaxonomy to the fatty acid content of some Malvaceae species. Biochem Syst Ecol 38:1035–1038

    Article  CAS  Google Scholar 

  • Pamplona R, Portero-Otin M, Riba D, Ruiz C, Prat J, Bellmunt MJ, Boria G (1998) Mitochondrial membrane peroxidizability index is inversely related to maximum life span in mammals. J Lipid Res 39:989–1994

    Article  Google Scholar 

  • Pejin B, Bianco A, Newmaster S, Sabovljevic M, Lj V, Tesevic V, Vajs V, De Rosa S (2012) Fatty acids of Rhodobryum ontariense (Bryaceae). Nat Prod Res 26:696–702

    Article  CAS  PubMed  Google Scholar 

  • Pohl P, Zurheide F (1982) Fat production in freshwater and marine algae. In: Hoppe HA, Levring T, Tanaka Y (Eds) Marine algae in pharmaceutical science, vol. 2. Walter De Gruyter & Co, Berlin-New York, pp 65–80

  • Prins HH (1982) Why are mosses eaten in cold environments only? Oikos 38:374–380

    Article  Google Scholar 

  • Rempt M, Pohnert G (2010) Novel acetylenic oxylipins from the moss Dicranum scoparium with antifeeding activity against herbivorous slugs. Angew Chem 49:4755–4758

    Article  CAS  Google Scholar 

  • Rose JP, Kriebel R, Sytsma K (2016) Shape analysis of moss (Bryophyta) sporophytes: insights into land plant evolution. Am J Bot 103:652–662

    Article  CAS  PubMed  Google Scholar 

  • Roy Chowdhuri A, Biswas Raha A, Mitra S, Datta J, Poddar Sarkar M (2018) “Dicranin” in the membrane phospholipids of a Dicranaceae and Pottiaceae moss member of the Eastern Himalayan Biodiversity Hotspot. Lipids 53:539–545

    Article  CAS  PubMed  Google Scholar 

  • Sewon P (1992) Fatty acyl composition of monogalactosyldiacyl glycerols in Bryophyta. Phytochemistry 31:3461–3465

    Article  CAS  Google Scholar 

  • Shaw AJ, Cox CJ, Goffinet B (2005) Global patterns of moss diversity: taxonomic and molecular inferences. Taxon 54:337–352

    Article  Google Scholar 

  • Spitzer V (1997) Structure analysis of fatty acids by gas chromatography – low resolution electron impact mass spectrometry of their 4,4-dimethyloxazoline derivatives – a review. Prog Lipid Res 35:387–408

    Article  Google Scholar 

  • Stamenkovic M, Steinwall E, Nilsson AK, Wulff A (2020) Fatty acids as chemotaxonomic and ecophysiological traits in green microalgae (desmids, Zygnematophyceae, Streptophyta): a discriminant analysis approach. Phytochemistry 170:112200

    Article  CAS  PubMed  Google Scholar 

  • Vitt DH (1984) Classification of the Bryopsida. In: Schuster RM (ed) New manual of bryology, vol 2. Hattori Bot Lab, Nichinan, pp 676–759

    Google Scholar 

  • Wagner H, Friedrich H (1965) Unsaturated fatty acids of mosses, club mosses and lichens. Naturwissenschaften 52:305

    Google Scholar 

  • Wagner H, Pohl P (1966) Eine these: Fettsäurebiosynthese und evolution bei pflanzlichen und tierischen organismen. Phytochemistry 5:903–920

    Article  CAS  Google Scholar 

  • Welti R, Shah J, Li W, Li M, Chen J, Burke JJ, Fauconnier M, Chapman K, Chye M, Wang X (2007) Plant lipidomics: discerning biological function by profiling plant complex lipids using mass spectrometry. Front Biosci 12:2494–2506

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. A. K. Asthana, National Botanical Research Institute, Lucknow, and Dr. Md. Nehal Aziz, Botanical Survey of India, Howrah, for authenticating some of the moss samples.

Funding

The authors (ABR and SM) are indebted to University Grants Commission, Government of India, for their fellowships (ABR: UGC-BSR-RFSMS Award No: UGC/1259/RFSMS/BOT dated 24.11.2014; and SM: UGC/851/RFSMS/Botany dated 22.08.2012). The work was supported by the Department of Science and Technology, Government of West Bengal (Grant number: 473(Sanc.)/ST/P/S&T/1G-16/2010 dated. 28.10.2010). We would also like to acknowledge the financial support from the University Grants Commission–Centre of Advanced Study (UGC-CAS) and the Department of Science and Technology–Fund for Improvement of S&T Infrastructure in Higher Educational Institutions (DST- FIST), Government of India, for the instrument facilities provided by the Department of Botany, University of Calcutta.

Author information

Authors and Affiliations

Authors

Contributions

First author (MPS) designed the experiments, collected samples, analysed the data and also revised the manuscript. Second author (ABR) collected samples and other field data, performed chrmoatographic analysis of lipids of 23 mosses and along with third author (JD) conducted microscopic investigation of the samples for identification. Corresponding author (SM) also collected samples and other field data, conducted chromatographic analysis of lipids of 17 mosses and overall statistical evaluation. He also prepared the draft manuscript.

Corresponding author

Correspondence to Souvik Mitra.

Ethics declarations

Ethics approval

Plant samples are not under any protective figure and hence no permission was required. Collection of samples was performed as per national guidelines.

Consent to participate

Not applicable.

Constent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Handling Editor: Peter Nick

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poddar Sarkar, M., Biswas Raha, A., Datta, J. et al. Chemotaxonomic and evolutionary perspectives of Bryophyta based on multivariate analysis of fatty acid fingerprints of Eastern Himalayan mosses. Protoplasma 259, 1125–1137 (2022). https://doi.org/10.1007/s00709-021-01723-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-021-01723-0

Keywords

Navigation