Skip to main content
Log in

Multivariate Data Analysis of Fatty Acid Content in the Classification of Olive Oils Developed Through Controlled Crossbreeding

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

The fatty acid (FA) composition of 540 Tunisian virgin olive oil hybrids (VOO) were classified by principal component analysis (PCA). Pearson correlation between FA variables revealed an inverse association between C18:1 and C18:2; C18:1 and C16:0, while C16:0 and C16:1 were positively correlated. PCA yielded five significant PCs, which together account for 79.95% of the total variance; with PC1 contributing 36.84% of the total. Eigenvalue analysis revealed that PC1 was mainly attributed to C18:1, monounsaturated fatty acids (MUFA) and the ratios oleic/linoleic (O/L) and monounsaturated fatty acids/polyunsaturated fatty acids (MUFA/PUFA); PC2, by C16:0, saturated fatty acids (SFA) and the palmitic/linoleic ratio (P/L); PC3 by C18:2 and C22:0, PC4 by C18:0 and PC5, by C17:1. Then, PCA analysis indicated that in addition to C16:0, C18:0, C18:1, C17:1, and C22:0, MUFA, SFA and the ratios O/L, P/L and MUFA/PUFA were determined to be the main factors responsible for the olive oil hybrids discrimination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Angerosa F, Servili M, Selvaggini R, Taticchi A, Esposto S, Montedoro GF (2004) Volatile compounds in virgin olive oil: occurrence and their relationship with the quality. J Chromatogr A 1054:17–31

    CAS  Google Scholar 

  2. Sanchez J, Harwood JL (2002) Biosynthesis of triacylglycerols and volatiles in olives. Eur J Lipid Sci Technol 104:564–573

    Article  CAS  Google Scholar 

  3. Psomiadou E, Karakostas KX, Blekas G, Tsimidou MZ, Boskou D (2003) Proposed parameters for monitoring quality of virgin olive oil (Koroneiki cv.). Eur J Lipid Sci Technol 105:403–409

    Article  CAS  Google Scholar 

  4. Aparicio R, Roda L, Albi MA, Gutiérrez F (1999) Effect of various compounds on virgin olive oil stability measured by Rancimat. J Agric Food Chem 47:4150–4155

    Article  CAS  Google Scholar 

  5. Kandylis P, Vekiari AS, Kanellaki M, Grati Kamoun N, Msallem M, Kourkoutas Y (2011) Comparative study of extra virgin olive oil flavor profile of Koroneiki variety (Olea europaea var microcarpa alba) cultivated in Greece and Tunisia during one period of harvesting. LWT-Food Sci Technol 44:1333–1341

    Article  CAS  Google Scholar 

  6. Angiolillo A, Reale S, Pilla F, Baldoni L (2006) Molecular analysis of olive cultivars in the Molise region of Italy. Genet Resour Crop Ev 53:289–295

    Article  CAS  Google Scholar 

  7. Pinelli P, Galardi C, Mulinacci N, Vincieri FF, Cimato A, Romani A (2003) Minor polar compound and fatty acid analyses in monocultivar virgin olive oils from Tuscany. Food Chem 80(3):331–336

    Article  CAS  Google Scholar 

  8. Aparicio R, Morales MT (1998) Characterization of olive ripeness by green aroma compounds of virgin olive oil. J Agric Food Chem 46(3):1116–1122

    Article  CAS  Google Scholar 

  9. Diraman H, Saygi H, Hisil Y (2010) Relationship between geographical origin and fatty acid composition of Turkish virgin olive oils for two harvest years. J Am Oil Chem Soc 87:781–789

    Article  CAS  Google Scholar 

  10. Mousa YM, Gerasopoulos D, Metzidakis I, Kiritsakis A (1996) Effect of altitude on fruit and oil quality characteristics of ‘Mastoides’ olives. J Sci Food Agric 71(3):345–350

    Article  CAS  Google Scholar 

  11. Gutierrez F, Albi MA, Palma R, Rios JJ, Olias JM (1989) Bitter taste of virgin olive oil: correlation of sensory evaluation and instrumental HPLC analysis. J Food Sci 54(1):68–70

    Article  CAS  Google Scholar 

  12. Mariani C, Fedeli E, Grob K, Artho A (1991) Indagine sulle variazioni dei componenti minori liberi ed esterificati di oli ottenuti da olive in funzione della maturazione e dello stoccaggio. Riv Ital Sostanze Gr 68(4):179–186

    CAS  Google Scholar 

  13. Stefanoudaki E, Koutsaftakis A, Harwood JL (2011) Influence of malaxation conditions on characteristic qualities of olive oil. Food Chem 127:1481–1486

    Article  CAS  Google Scholar 

  14. De Caraffa BV, Gambotti C, Giannettini J, Maury J, Berti L, Gandemer G (2008) Using lipid profiles and genotypes for the characterization of Corsican olive oils. Eur J Lipid Sci Technol 110:40–47

    Article  Google Scholar 

  15. International Olive Council (IOC) (2009) Trade standard applying to olive oil and olive pomace oils. COI/T.15/NC no 3/Rev. 4. Novembre

  16. Dabbou S, Rjiba I, Nakbi A, Gazzah N, Issaoui M, Hammami M (2010) Compositional quality of virgin olive oils from cultivars introduced in Tunisian arid zones in comparison to Chemlali cultivars. Sci Hortic 124:122–127

    Article  CAS  Google Scholar 

  17. Dabbou S, Issaoui M, Servili M, Taticchi A, Sifi S, Montedoro GF, Hammami M (2009) Characterisation of virgin olive oils from European olive cultivars introduced in Tunisia. Eur J Lipid Sci Technol 111:392–401

    Article  CAS  Google Scholar 

  18. Trigui A, Fiorino P (1995) L’amélioration génétique des variétés d’olivier par croisement: Programme et Résultats Préliminaires du Projet du AGO/COI/FCPB. Olea 23:24

    Google Scholar 

  19. Milatović D, Nikolić D, Đurović D (2010) Variability, heritability and correlations of some factors affecting productivity in peach. Hort Sci (Prague) 37(3):79–87

    Google Scholar 

  20. Dabbou S, Rjiba I, Echbili A, Gazzah N, Mechri B, Hammami M (2010) Effect of controlled crossing on the triglyceride and fatty acid composition of virgin olive oils. Chem Biodivers 7:1801–1813

    Article  CAS  Google Scholar 

  21. Matos LC, Cunha SC, Amaral JS, Pereira JA, Andrade PB, Seabra RM, Oliveira BPP (2007) Chemometric characterization of three varietal olive oils (Cvs. Cobrancosa, Madural and Verdeal Transmontana) extracted from olives with different maturation indices. Food Chem 102:406–414

    Article  CAS  Google Scholar 

  22. Stefanoudaki E, Kotsifaki F, Koutsaftakis A (1999) Classification of virgin olive oils of the two major Cretan cultivars based on their fatty acid composition. J Am Oil Chem Soc 76:623–626

    Article  CAS  Google Scholar 

  23. Ilyasoglu H, Ozcelik B, Van Hoed V, Verhe R (2010) Characterization of Aegean olive oils by their minor compounds. J Am Oil Chem Soc 87:627–636

    Article  CAS  Google Scholar 

  24. Arvanitoyannis IS, Vlachos A (2007) Implementation of physicochemical and sensory analysis in conjunction with multivariate analysis towards assessing olive oil authentication/adulteration. Crit Rev Food Sci Nutr 47(5):441–498

    Article  CAS  Google Scholar 

  25. Tzouros NE, Arvanitoyannis IS (2001) Agricultural produces: synopsis of employed quality control methods for the authentication of foods and for the classification of foods according to their variety of geographical origin. Crit Rev Food Sci Nutr 41(4):287–319

    Article  CAS  Google Scholar 

  26. Allen C, Good P (1971) Acyl lipids in photosynthetic systems. In: Colowic SP, Kaplan NO (eds) Methods in enzymology, vol 23. Academic Press, New York, pp 523–547

    Google Scholar 

  27. EUC (2003) Commission of the European Communities, Commission Regulation EC/1989/03 amending Regulation EEC/2568/91 on the characteristics of olive and olive-pomace oil and on the relevant methods of analysis. Off J Eur Union L295, pp. 57

  28. International Olive Council (IOC) (2001) In COI/T.15/NC no. 2/Rev. 10; COI/T.20/Doc. no. 24

  29. Çam M, Yaşar H, Durmaz G (2009) Classification of eight pomegranate juices based on antioxidant activity measured by four methods. Food Chem 112:721–726

    Article  Google Scholar 

  30. Massart DL, Vandeginste BGM, Deming SN, Michotte Y, Kaufman L (1988) Chemometrices: a textbook. Elsevier, Amsterdam

    Google Scholar 

  31. Sola-Larrañaga C, Navarro-Blasco I (2009) Chemometric analysis of minerals and trace elements in raw cow milk from the community of Navarra, Spain. Food Chem 112:189–196

    Article  Google Scholar 

  32. Bianchi G, Giansante L, Shaw A, Kell DB (2001) Chemometric criteria for the characterisation of Italian protected Denomination of Origin (DOP) olive oils from their metabolic profiles. Eur J Lipid Sci Technol 103:141–150

    Article  CAS  Google Scholar 

  33. Kaiser HF (1960) The application of electronic computers to factor analysis. Educ Psychol Meas 20:141–151

    Article  Google Scholar 

  34. León L, De la Rosa R, Gracia A, Barranco D, Rallo L (2008) Fatty acid composition of advanced olive selections obtained by crossbreeding. J Sci Food Agric 88(11):1863–2041

    Article  Google Scholar 

  35. León L, Beltran G, Aguilera MP, Rallo L, Barranco D, De la Rosa R (2011) Oil composition of advanced selections from an olive breeding program. Eur J Lipid Sci Technol 113(7):870–875

    Article  Google Scholar 

  36. Gomez-rico A, Salvador MD, Moriano A, Perez D, Olmedilla N, Ribas F, Fregapane G (2005) Influence of different irrigation strategies in a traditional Cornicabra cv. olive orchard on virgin olive oil composition and quality. Food Chem 2:568–578

    Google Scholar 

  37. Mondal N, Bhat KV, Srivastava PS (2010) Variation in fatty acid composition in Indian germplasm of sesame. J Am Oil Chem Soc 87:1263–1269

    Article  CAS  Google Scholar 

  38. Cichelli A, Pertesana GP (2004) High-performance liquid chromatography analysis of chlorophylls, pheophytins and carotenoids in virgin olive oil: chemometric approach to variety classification. J Chromatogr A 1046:141–146

    CAS  Google Scholar 

  39. Shin EC, Craft BD, Pegg RB, Phillips RD, Eitenmiller RR (2010) Chemometric approach to fatty acid profiles in runner-type peanut cultivars by principal component analysis (PCA). Food Chem 119:1262–1270

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the ‘Ministère de l’Enseignement Supérieur et de la Recherche Scientifique et de la Technologie UR03ES08 “Nutrition Humaine et Désordres Métaboliques” and ‘DGRST-USCR-Spectrométrie de masse. The authors are grateful to Dr A. Trigui, Mr A. Yangui, Mr H. Belguith and Mr I. Chreaif and to the staff of the experimental farms of Taous (Sfax, Tunisia) who contributed to making this research possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samia Dabbou.

About this article

Cite this article

Dabbou, S., Chaieb, I., Rjiba, I. et al. Multivariate Data Analysis of Fatty Acid Content in the Classification of Olive Oils Developed Through Controlled Crossbreeding. J Am Oil Chem Soc 89, 667–674 (2012). https://doi.org/10.1007/s11746-011-1946-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-011-1946-1

Keywords

Navigation