Skip to main content
Log in

Comparison of headspace-oxylipin-volatilomes of some Eastern Himalayan mosses extracted by sample enrichment probe and analysed by gas chromatography-mass spectrometry

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Mosses have an inherent adaptability against different biotic and abiotic stresses. Oxylipins, the volatile metabolites derived from polyunsaturated fatty acids (PUFAs), play a key role in the chemical defence strategy of mosses. In the present study, a comparative survey of these compounds, including an investigation into their precursor fatty acids (FAs), was carried out for the first time on the mosses Brachymenium capitulatum (Mitt.) Paris, Hydrogonium consanguineum (Thwaites & Mitt.) Hilp., Barbula hastata Mitt., and Octoblepharum albidum Hedw. collected from the Eastern Himalayan Biodiversity hotspot. Their headspace volatiles were sampled using a high-efficiency sample enrichment probe (SEP) and were characterized by gas chromatography-mass spectrometric analysis. FAs from neutral lipid (NL) and phospholipid (PL) fractions were also evaluated. Analysis of the oxylipin volatilome revealed the generation of diverse metabolites from C5 to C18, dominated by alkanes, alkenes, saturated and unsaturated alcohols, aldehydes, ketones and cyclic compounds, with pronounced structural variations. The C6 and C8 compounds dominated the total volatilome of all the samples. Analyses of FAs from membrane PL and storage NL highlighted the involvement of C18 and C20 PUFAs in oxylipin generation. The volatilome of each moss is characterized by a ‘signature oxylipin mixture’. Quantitative differences in the C6 and C8 metabolites indicate their phylogenetic significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

FA(s):

Fatty acid(s)

FAME(s):

Fatty acid methyl ester(s)

FFA(s):

Unesterified fatty acid(s)

GC-MS:

Gas chromatography-mass spectrometry

HPTLC:

High-performance thin layer chromatography

HSV(s):

Headspace volatile(s)

LOX:

Lipoxygenase

MUFA(s):

Monounsaturated fatty acid(s)

NL(s):

Neutral lipid(s)

PCA:

Principal component analysis

PDMS:

Polydimethylsiloxane

PL(s):

Phospholipid(s)

PtdCho:

Phosphatidylcholine

PtdEth:

Phosphatidyethanolamine

PUFA(s):

Polyunsaturated fatty acid(s)

RRt :

Relative retention time

SEP:

Sample enrichment probe

SFA(s):

Saturated fatty acid(s)

TAG(s):

Triacylglycerol(s)

TIC:

Total ion chromatogram

References

  • Andreou A, Brodhun F, Feussner I (2009) Biosynthesis of oxylipins in non-mammals. Prog Lipid Res 48:148–170

    Article  CAS  PubMed  Google Scholar 

  • Asakawa Y (1990) Biologically active substances from bryophytes. In: Chopra RN, Bhatla SC (eds) Bryophyte development: physiology and biochemistry. CRC, Boca Raton, pp 259–287

    Google Scholar 

  • Asakawa Y (1995) Chemical constituents of the bryophytes. In: Herz W, Kirby WB, Moore RE, Steglich W, Tamm CH (eds) Progress in the chemistry of organic natural products, vol 65. Springer, Vienna, pp 1–618

    Chapter  Google Scholar 

  • Asakawa Y, Ludwiczuk A, Nagashima F (2013) Chemical constituents of bryophytes: bio- and chemical diversity, biological activity and chemosystematics. In: Kinghorn DA, Falk H, Kobayashi J (eds) Progress in the chemistry of organic natural products, vol 95. Springer, Vienna, pp 1–790

    Google Scholar 

  • Bai XW, Song CH, You JM, Sun ZW, Fu YY, Liang G (2010) Determination of fatty acids (C1-C10) from bryophytes and pteridophytes. Chromatographia 71:1125–1129

    Article  CAS  Google Scholar 

  • Beike AK, Jaeger C, Zink F, Decker EL, Reski R (2014) High contents of very long-chain polyunsaturated fatty acids in different moss species. Plant Cell Rep 33:245–254

    Article  CAS  PubMed  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Bottcher C, Pollmann S (2009) Plant oxylipins: plant responses to 12-oxo-phytodienoic acid are governed by its specific structural and functional properties. FEBS J 276:4693–4704

    Article  CAS  PubMed  Google Scholar 

  • Brodhun F, Feussner I (2011) Oxylipins in fungi. FEBS J 278:1047–1063

    Article  CAS  PubMed  Google Scholar 

  • Bukvicki D, Gottardi D, Veljic M, Martin PD, Vannini L, Guerzoni ME (2012) Identification of volatile components of liverwort (Porella cordaeana) extracts using GC/MS-SPME and their antimicrobial activity. Molecules 17:6982–6995

    Article  CAS  PubMed  Google Scholar 

  • Burger BV, Marx B, Roux M, Burger WJG (2006) Simplified analysis of organic compounds in headspace and aqueous samples by high-capacity sample enrichment probe. J Chromatogr A 1121:259–267

    Article  CAS  PubMed  Google Scholar 

  • Burger BV, Roux M, Marx B, Herbert SA, Amakali KT (2011) Development of second-generation sample enrichment probe for improved sorptive analysis of volatile organic compounds. J Chromatogr A 1218:1567–1575

    Article  CAS  PubMed  Google Scholar 

  • Christie WW (1982) Lipid analysis, 2nd edn. Pergamon, Oxford

    Google Scholar 

  • Croisier E, Rempt M, Ponhert G (2010) Survey of volatile oxylipins and their biosynthetic precursors in bryophytes. Phytochemistry 71:574–580

    Article  CAS  PubMed  Google Scholar 

  • Dembitsky VM (1993) Lipids of bryophytes. Prog Lipid Res 32:281–356

    Article  CAS  PubMed  Google Scholar 

  • Eichenberger W, Araki S, Müller DG (1993) Betaine lipids and phospholipids in brown algae. Phytochemistry 34:1323–1333

    Article  CAS  Google Scholar 

  • Feussner I, Wasternack C (2002) The lipoxygenase pathway. Ann Rev Plant Biol 53:275–297

    Article  CAS  Google Scholar 

  • Gangulee HC (1972-1974) Mosses of Eastern India and adjacent regions: a monograph, Fac.6. Calcutta, India

  • Gangulee HC (1985) Handbook of Indian mosses. Amerind, New Delhi

    Google Scholar 

  • Gardner HW, Grove MJ, Slach YP (1996) Enzymatic pathway to ethyl vinyl ketone and 2-pentenal in soybean preparations. J Agri Food Chem 44:882–886

    Article  CAS  Google Scholar 

  • Gellermann JL, Anderson WH, Richardson DG, Schlenk H (1975) Distribution of arachidonic and eicosapentanoic acids in the lipids of mosses. Biochim et Biophys Acta- Lipids and Lipid Med 388:277–290

    Article  Google Scholar 

  • Goffinet B, Shaw AJ (2008) Bryophyte biology, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gray DA, Prestage S, Linforth RST, Taylor AJ (1999) Fresh tomato specific fluctuations in the composition of lipoxygenase-generated C6 aldehydes. Food Chem 64:149–155

    Article  CAS  Google Scholar 

  • Guschina IA, Harwood JL (2002) Lipid metabolism in the moss Rhytidiadelphus squarrosus (Hedw.) Warnst. from lead-contaminated and non-contaminated populations. J Exp Bot 53:455–463

    Article  CAS  PubMed  Google Scholar 

  • Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Paleontologica Electronica 4:9, http://paleo-electronica.org/2001_1/past/issue1_01.htm

    Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Ann Rev Plant Biol 59:41–66

    Article  CAS  Google Scholar 

  • Jobson JD (1992) Applied multivariate data analysis. Categorical and multivariate methods. vol 2. Springer, New York

  • Kohn G, Demmerle S, Vandekerkhove O, Hartmann E, Beutelmann P (1987) Distribution and chemotaxonomic significance of acetylenic fatty acids in mosses of Dicranales. Phytochemistry 26:2271–2275

    Article  CAS  Google Scholar 

  • Koo AJK, Howe GA (2009) The wound hormone jasmonate. Phytochemistry 70:1571–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsui K (2006) Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr Opin in Plant Biol 9:274–280

    Article  CAS  Google Scholar 

  • Mikami K, Hartmann E (2004) Lipid metabolism in mosses. In: Wood AJ, Oliver MJ, Cove DJ (eds) New frontiers in bryology: physiology, molecular biology and functional genomics. Kluwer Academic, London, pp 133–156

    Chapter  Google Scholar 

  • Mitra S, Burger BV, Poddar-Sarkar M (2013) Headspace volatile oxylipins of Eastern Himalayan moss Cyathophorella adiantum extracted by sample enrichment probe. Lipids 48:997–1004

    Article  CAS  PubMed  Google Scholar 

  • Mosblech A, Feussner I, Heilmann I (2009) Oxylipins: structurally diverse metabolites from fatty acid oxidation. Plant Physiol Biochem 47:511–517

    Article  CAS  PubMed  Google Scholar 

  • Noordermeer MA, Veldink GA, Vliegenthart JF (2001) Fatty acid hydroperoxide lyase: a plant cytochrome p450 enzyme involved in wound healing and pest resistance. Chembiochem 2:494–504

    Article  CAS  PubMed  Google Scholar 

  • Pohnert G, Boland W (2002) The oxylipin chemistry of attraction and defense in brown algae and diatoms. Nat Prod Rep 19:108–122

    Article  CAS  PubMed  Google Scholar 

  • Qiao F, Ma SC, Lin RC, Kong LY (2004) GC-MS analysis of essential oil of Rhododendron giganteum. J Chin Pharm Sci 39:704–706

    CAS  Google Scholar 

  • Rempt M, Pohnert G (2010) Novel acetylenic oxylipin from the moss Dicranum scoparium with antifeeding activity against herbivorous slugs. Angew Chem Int Ed 49:4755–4758

    Article  CAS  Google Scholar 

  • Saritas Y, Sonwa MM, Hassan I, König WA, Muhle H, Mues R (2001) Volatile constituents in mosses (Musci). Phytochemistry 57:443–457

    Article  CAS  PubMed  Google Scholar 

  • Senger T, Wichard T, Kunze S, Gobel C, Lerchl J, Pohnert G, Feussner I (2005) A multifunctional lipoxygenase with fatty acid hydroperoxide cleaving activity from the moss Physcomitrella patens. J Biol Chem 280:7588–7596

    Article  CAS  PubMed  Google Scholar 

  • Skipski VP, Peterson RF, Barclay M (1964) Quantitative analysis of phospholipids by thin-layer chromatography. Biochem J 90:374–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sloane DL, Leung R, Craik CS, Sigal E (1991) A primary determinant for lipoxygenase positional specificity. Nature 354:149–152

    Article  CAS  PubMed  Google Scholar 

  • Spiteller D, Spiteller G (2000) Direkter Nachweis von toxischem 2, 4- Decadienal in oxydiertem Low-Density-Lipoprotein durch Fest phasen extraktion. Angew Chem 112:595–597

    Article  Google Scholar 

  • Stumpe M, Bode J, Go¨bel C, Wichard T, Schaaf A, Frank W, Frank M, Reski R, Pohnert G, Feussner I (2006) Biosynthesis of C9-aldehydes in the moss Physcomitrella patens. Biochim et Biophys Acta: Mol Cell Biol Lipids 1761:301–312

    Article  CAS  Google Scholar 

  • Ucuncu O, Cansu TB, Ozdemir T, Alpaykaraoglu S, Yayli N (2010) Chemical composition and antimicrobial activity of the essential oils of mosses (Tortula muralis Hedw., Homalothecium lutescens (Hedw.) H. Rob., Hypnum cupressiforme Hedw., and Pohlia nutans (Hedw.) Lindb. from Turkey. Turk J Chem 34:825–834

    CAS  Google Scholar 

  • Vanderpoorten A, Goffinet B (2009) Introduction to bryophytes. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Van Den Dool H, Kratz PD (1963) A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr 11:463–471

    Article  Google Scholar 

  • Wang X (2001) Plant phospholipases. Annu Rev Plant Physiol Plant Mol Biol 52:211–231

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wichard T, Gobel C, Feussner I, Pohnert G (2005) Unprecedented lipoxygenase/hydroperoxidelyase pathways in the moss Physcomitrella patens. Angew Chem Int Ed 44:158–161

    Article  CAS  Google Scholar 

  • Zinmeister HD, Mues R (1990) Bryophytes: their chemistry and chemical taxonomy. Clarendon, Oxford

    Google Scholar 

Download references

Acknowledgments

The work was financially supported by the Department of Science and Technology, Government of West Bengal (WB-DST). Instrumental support from the University Grants Commission–Centre of Advanced Study (UGC-CAS) and the Department of Science and Technology–Fund for Improvement of S&T Infrastructure in Higher Educational Institutions (DST-FIST), Government of India, are gratefully acknowledged. The authors are thankful to Dr. Md. Nihal Aziz and Ms. Pamela Saha, Botanical Survey of India, Howrah, for helping in the identification of the mosses. The authors thank those who have critically reviewed this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mousumi Poddar-Sarkar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Handling Editor: Peter Nick

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 419 kb)

ESM 2

(PDF 133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitra, S., Burger, B.V. & Poddar-Sarkar, M. Comparison of headspace-oxylipin-volatilomes of some Eastern Himalayan mosses extracted by sample enrichment probe and analysed by gas chromatography-mass spectrometry. Protoplasma 254, 1115–1126 (2017). https://doi.org/10.1007/s00709-016-1018-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-016-1018-3

Keywords

Navigation