Skip to main content
Log in

Morpho-physiological characterization coupled with expressional accord of exclusion mechanism in wild and cultivated lentil under aluminum stress

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Aluminum stress deteriorates lentil production under acidic soils. Enhanced insight into Al tolerance traits is needed to improve its productivity. Therefore, Al-resistant (L-4602, PAL-8) and Al-sensitive (BM-4, EC-223229) cultivars along with a resistant wild (ILWL-15) were characterized for morpho-physiological traits viz. seedling root architecture (SRA), Al accumulation, and localization via fluorescent and non-fluorescent staining under control and Al-treated conditions. Also, antioxidant activities and organic acid secretion were quantified, and expressions of 10 associated genes were analyzed. Roots of Al-resistant cultivars and wild genotype showed higher root growth, antioxidant enzyme activities, and organic acid secretion than Al-sensitive ones. Among these traits, higher organic acid secretion was influenced by enhanced expression of genes, especially—aluminum sensitive-3 (ALS 3), aluminum-activated malate transporter (ALMT), multidrug and toxic compound extrusion (MATE), citrate synthase (CS), and phospho enol pyruvate carboxylase (PEPC)—which helped in reducing Al and callose accumulation. These genes were located on lentil chromosomes via sequence alignment with lentil draft genome. A strong link between morpho-physiological variation and organic acid secretion was noted which reinforced the prominence of exclusion mechanism. It was complemented by enhanced antioxidant activities at seedling stage which mitigated Al stress effects on SRA. Wild outperformed over cultivars indicating its impregnable evolution which can be exploited to better understand tolerance mechanisms. Al-resistant cultivars had significantly higher seed yield than Al-sensitive and national checks on Al-toxic fields, confirming—tolerance is sustained till reproductive stage in lentil. This study elucidated role of gene families in eliminating Al toxicity that will assist breeders to formulate strategies for developing Al-resistant cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Al:

Aluminum

PEPC:

Phosphoenolpyruvate carboxylase

CS:

Citrate synthase

ICDH:

Isocitrate dehydrogenase

MDH:

Malate dehydrogenase

MATE-a:

Multidrug and toxic compound extrusion-a

MATE-b:

Multidrug and toxic compound extrusion-b

MATE-c:

Multidrug and toxic compound extrusion-c

ALS3:

Al-sensitive3

ALMT1:

Al-activated malate transporter

VDAC:

Voltage dependent anion channel

SOD:

Superoxide dismutase

APX:

Ascorbate peroxidase

GPX:

Glutathione peroxidase

CAT:

Catalase

References

  • Alvim MN, Ramos FT, Oliveira DC, Isaias RMS, Franca MGC (2012) Aluminium localization and toxicity symptoms related to root growth inhibition in rice (Oryza sativa L) seedlings. J Biosci 37(1):1079–1088

    Article  CAS  PubMed  Google Scholar 

  • Anoop VM, Basu U, McCammon MT, McAlister-Henn L, Taylor GJ (2003) Modulation of citrate metabolism alters aluminum tolerance in yeast and transgenic canola overexpressing a mitochondrial citrate synthase. Plant Physiol 132(4):2205–2217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awasthi JP, Saha B, Panigrahi J, Yanase E, Koyama H, Panda SK (2019) Redox balance, metabolic fingerprint and physiological characterization in contrasting North East Indian rice for Aluminum stress tolerance. Sci Rep 9(1):1–21

    Article  CAS  Google Scholar 

  • Barcelo J, Poschenrieder C (2002) Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environ Exp Bot 48(1):75–92

    Article  CAS  Google Scholar 

  • Barnhisel R, Bertsch PM (1983) Aluminum. In: Methods of soil analysis: part 2 chemical and microbiological properties, vol 19, pp 275–300

    Google Scholar 

  • Boscolo PR, Menossi M, Jorge RA (2003) Aluminum-induced oxidative stress in maize. Phytochem 62(2):181–189

    Article  CAS  Google Scholar 

  • Darko E, Ambrus H, Stefanovits-Bányai É, Fodor J, Bakos F, Barnabás B (2004) Aluminium toxicity, Al tolerance and oxidative stress in an Al-sensitive wheat genotype and in Al-tolerant lines developed by in vitro microspore selection. Plant Sci 166(3):583–591

    Article  CAS  Google Scholar 

  • Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H (2004) Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proc Natl Acad Sci 101(42):15249–15254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delhaize E, Ma JF, Ryan PR (2012) Transcriptional regulation of aluminium tolerance genes. Trends Plant Sci 17(6):341–348

    Article  CAS  PubMed  Google Scholar 

  • Desai MK, Mishra RN, Verma D, Nair S, Sopory SK, Reddy MK (2006) Structural and functional analysis of a salt stress inducible gene encoding voltage dependent anion channel (VDAC) from pearl millet (Pennisetum glaucum). Plant Physiol Biochem 44(7-9):483–493. https://doi.org/10.1016/j.plaphy.2006.08.008

    Article  CAS  PubMed  Google Scholar 

  • Dorneles AOS, Pereira AS, Rossato LV, Possebom G, Sasso VM, Bernardy K, Sandri RDQ, Nicoloso FT, Ferreira PAA, Tabaldi LA (2016) Silicon reduces aluminum content in tissues and ameliorates its toxic effects on potato plant growth. Cienc Rural 46(3):506–512

    Article  CAS  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6(5):e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ermolayev V, Weschke W, Manteuffel R (2003) Comparison of Al-induced gene expression in sensitive and tolerant soybean cultivars. J Exp Bot 54(393):2745–2756

    Article  CAS  PubMed  Google Scholar 

  • Erskine W, Rihawi S, Capper BS (1990) Variation in lentil straw quality. Anim Feed Sci Technol 28(1-2):61–69

    Article  Google Scholar 

  • Eticha D, Zahn M, Bremer M, Yang Z, Rangel AF, Rao IM, Horst WJ (2010) Transcriptomic analysis reveals differential gene expression in response to aluminium in common bean (Phaseolus vulgaris) genotypes. Ann Bot 105(7):1119–1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontecha G, Silva-Navas J, Benito C, Mestres MA, Espino FJ, Hernández-Riquer MV, Gallego FJ (2007) Candidate gene identification of an aluminum-activated organic acid transporter gene at the Alt4 locus for aluminum tolerance in rye (Secale cereale L). Theor Appl Genet 114(2):249–260

    Article  CAS  PubMed  Google Scholar 

  • Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Takeda K, Ma JF (2007) An aluminum-activated citrate transporter in barley. Plant Cell Physiol 48(8):1081–1091

    Article  CAS  PubMed  Google Scholar 

  • Gabrielson KM, Cancel JD, Morua LF, Larsen PB (2006) Identification of dominant mutations that confer increased aluminium tolerance through mutagenesis of the Al-sensitive Arabidopsis mutant, als3-1. J Exp Bot 57(4):943–951

    Article  CAS  PubMed  Google Scholar 

  • Giannakoula A, Moustakas M, Syros T, Yupsanis T (2010) Aluminum stress induces up-regulation of an efficient antioxidant system in the Al-tolerant maize line but not in the Al-sensitive line. Environ Exp Bot 67(3):487–494

    Article  CAS  Google Scholar 

  • Guo P, Bai G, Carve B, Li R, Bernardo A, Baum M (2007) Transcriptional analysis between two wheat near-isogenic lines contrasting in aluminum tolerance under aluminum stress. Mol Genet Genomics 277(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Zhang W, Zhang B, Zhang S, Wang W, Ming F (2009) One novel mitochondrial citrate synthase from Oryza sativa L can enhance aluminum tolerance in transgenic tobacco. Mol Biotechnol 42(3):299–305

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Bhuyan MHM, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9(8):681

    Article  CAS  PubMed Central  Google Scholar 

  • Haug A (1985) Aluminum toxicity in plant: the role of root plasma membrane and calmodulin. In: Frontiers of Membrane Research in Agriculture: Beltsville Symposium, vol 9. Rowman & Allanheld, Totowa, pp 359–381

    Google Scholar 

  • Hirano Y, Pannatier EG, Zimmermann S, Brunner I (2004) Induction of callose in roots of Norway spruce seedlings after short-term exposure to aluminum. Tree Physiol 24(11):1279–1283

    Article  CAS  PubMed  Google Scholar 

  • Horst WJ, Wang Y, Eticha D (2010) The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: a review. Ann Bot 106(1):185–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jolliffe IT (2002) Principal components in regression analysis. In: Principal component analysis. Springer, Amsterdam, pp 167–198. https://doi.org/10.1007/0-387-22440-8_8

    Chapter  Google Scholar 

  • Jones DL, Blancaflor EB, Kochian LV, Gilroy S (2006) Spatial coordination of aluminium uptake, production of reactive oxygen species, callose production and wall rigidification in maize roots. Plant Cell Environ 29(7):1309–1318

    Article  CAS  PubMed  Google Scholar 

  • Klug B, Specht A, Horst WJ (2011) Aluminium localization in root tips of the aluminium-accumulating plant species buckwheat (Fagopyrum esculentum Moench). J Exp Bot 62(15):5453–5462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Biol 46(1):237–260

    Article  CAS  Google Scholar 

  • Kochian LV, Pineros MA, Liu J, Magalhaes JV (2015) Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Annu Rev Plant Biol 66:571–598

    Article  CAS  PubMed  Google Scholar 

  • Larsen PB, Geisler MJ, Jones CA, Williams KM, Cancel JD (2005) ALS3 encodes a phloem localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. Plant J 41(3):353–363

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Yang G, Luo L, Ke T, Zhang J, Li K, He G (2008) Aluminium sensitivity and tolerance in model and elite wheat varieties. Cereal Res Commun 36(2):257–267

    Article  Google Scholar 

  • Li ZY, Xu ZS, He GY, Yang GX, Chen M, Li LC, Ma Y (2013) The voltage-dependent anion channel 1 (AtVDAC1) negatively regulates plant cold responses during germination and seedling development in Arabidopsis and interacts with calcium sensor CBL1. Int J Mol Sci 14(1):701–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Meng H, Xing H, Liang L, Zhao X, Luo K (2017) Genome-wide analysis of MATE transporters and molecular characterization of aluminum resistance in Populus. J Exp Bot 68(20):5669–5683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loskutov IG, Kosareva IA, Melnikova SV, Blinova EV, Bagmet LV (2017) Genetic diversity in tolerance of wild Avena species to aluminium (Al). Genet Resour Crop Evol 64(5):955–965

    Article  CAS  Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6(6):273–278

    Article  CAS  PubMed  Google Scholar 

  • Ma B, Gao L, Zhang H, Cui J, Shen Z (2012) Aluminum-induced oxidative stress and changes in antioxidant defenses in the roots of rice varieties differing in Al tolerance. Plant Cell Rep 31(4):687–696

    Article  CAS  PubMed  Google Scholar 

  • Magalhaes JV, Liu J, Guimaraes CT, Lana UG, Alves VM, Wang YH, Schaffert RE, Hoekenga OA, Pineros MA, Shaff JE, Klein PE (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39(9):1156–1161

    Article  CAS  PubMed  Google Scholar 

  • Mandal KG, Misra AK, Hati KM, Bandyopadhyay KK, Ghosh PK, Mohanty M (2004) Rice residue-management options and effects on soil properties and crop productivity. J Food Agric Environ 2:224–231

    Google Scholar 

  • Manrique G, Rao I, Beebe S (2006) Identification of aluminum resistant common bean genotypes using a hydroponic screening method. In: 18th world congress of soil science, Philadelphia, USA

    Google Scholar 

  • Massot N, Llugany M, Poschenrieder C, Barceló J (1999) Callose production as indicator of aluminum toxicity in bean cultivars. J Plant Nutr 22(1):1–0

    Article  CAS  Google Scholar 

  • Pavan S, Bardaro N, Fanelli V, Marcotrigiano AR, Mangini G, Taranto F, Catalano D, Montemurro C, De Giovanni C, Lotti C, Ricciardi L (2019) Genotyping by sequencing of cultivated lentil (Lens culinaris Medik.) highlights population structure in the Mediterranean gene pool associated with geographic patterns and phenotypic variables. Front Genet 10:872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pellet DM, Grunes DL, Kochian LV (1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.). Planta 196:788–795

    Article  CAS  Google Scholar 

  • Pereira JF, Zhou G, Delhaize E, Richardson T, Zhou M, Ryan PR (2010) Engineering greater aluminium resistance in wheat by over-expressing TaALMT1. Ann Bot 106(1):205–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piñeros MA, Kochian LV (2001) A patch-clamp study on the physiology of aluminum toxicity and aluminum tolerance in maize. Identification and characterization of Al3+-induced anion channels. Plant Physiol 125:292–305

    Article  PubMed  PubMed Central  Google Scholar 

  • Polanco C, de Miera LES, Bett K, de la Vega MP (2018) A genome-wide identification and comparative analysis of the lentil MLO genes. PloSOne 13(3):e0194945

    Article  CAS  Google Scholar 

  • Ramesh T, Bolan NS, Kirkham MB, Wijesekara H, Kanchikerimath M, Rao CS, Wang H (2019) Soil organic carbon dynamics: impact of land use changes and management practices: a review. Adv Agron 156:1–107

    Article  Google Scholar 

  • Rangel AF, Rao IM, Braun HP, Horst WJ (2010) Aluminum resistance in common bean (Phaseolus vulgaris) involves induction and maintenance of citrate exudation from root apices. Physiol Plant 8(2):176–190

    Article  CAS  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum activated malate transporter. Plant J 37(5):645–653

    Article  CAS  PubMed  Google Scholar 

  • Silva S (2012) Aluminium toxicity targets in plants. J Bot 4(7):592–597. https://doi.org/10.1155/2012/219462

    Article  CAS  Google Scholar 

  • Singh D, Singh NP, Chauhan SK, Singh P (2011) Developing aluminium-tolerant crop plants using biotechnological tools. Curr Sci 100(12):1807–1814

    CAS  Google Scholar 

  • Singh D, Pal M, Singh CK, Taunk J, Jain P, Chaturvedi AK, Maurya S, Karwa S, Singh R, Tomar RSS, Nongthombam R (2016) Molecular scanning and morpho-physiological dissection of component mechanism in Lens species in response to aluminium stress. PLoS One 11(7):e0160073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh CK, Singh D, Tomar RSS, Karwa S, Upadhyaya KC, Pal M (2018) Molecular mapping of aluminium resistance loci based on root re-growth and Al-induced fluorescent signals (callose accumulation) in lentil (Lens culinaris Medikus). Mol Biol Rep 45(6):2103–2113

    Article  CAS  PubMed  Google Scholar 

  • Sinha R, Sharma TR, Singh AK (2019) Validation of reference genes for qRT-PCR data normalisation in lentil (Lens culinaris) under leaf developmental stages and abiotic stresses. Physiol Mol Biol Plants 25(1):123–134

    Article  CAS  PubMed  Google Scholar 

  • Smith E, Naik D, Cumming JR (2011) Genotypic variation in aluminum resistance, cellular aluminum fractions, callose and pectin formation and organic acid accumulation in roots of Populus hybrids. Environ Exp Bot 72(2):182–193

    Article  CAS  Google Scholar 

  • Sun G, Zhu H, Wen S, Liu L, Gou L, Guo Z (2020) Citrate synthesis and exudation confer Al resistance in alfalfa (Medicago sativa L). Plant Soil 449:319–329

    Article  CAS  Google Scholar 

  • Yang ZM, Nian H, Sivaguru M, Tanakamaru S, Matsumoto H (2001) Characterization of aluminium induced citrate secretion in aluminium tolerant soybean (Glycine max) plants. Physiol Plant 113(1):64–71

    Article  CAS  Google Scholar 

  • Yang ZM, Yang H, Wang J, Wang YS (2004) Aluminum regulation of citrate metabolism for Al-induced citrate efflux in the roots of Cassia tora L. Plant Sci 166(6):1589–1594

    Article  CAS  Google Scholar 

  • Zhang WH, Ryan PR, Tyerman SD (2001) Malate-permeable channels and cation channels activated by aluminum in the apical cells of wheat roots. Plant Physiol 125(3):1459–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Takano T, Liu S, Zhang X (2015) Arabidopsis mitochondrial voltage-dependent anion channel 3 (AtVDAC3) protein interacts with thioredoxin m2. FEBS Lett 589(11):1207–1213

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Ma JF, Sato K, Takeda K (2003) Differential Al resistance and citrate secretion in barley (Hordeum vulgare L). Planta 217(5):794–800

    Article  CAS  PubMed  Google Scholar 

  • Zheng SJ, Ma JF, Matsumoto H (1998) High aluminum resistance in buckwheat: I Al-induced specific secretion of oxalic acid from root tips. Plant Physiol 117(3):745–751

    Article  PubMed Central  Google Scholar 

  • Zhou G, Pereira JF, Delhaize E, Zhou M, Magalhaes JV, Ryan PR (2014) Enhancing the aluminium tolerance of barley by expressing the citrate transporter genes SbMATE and FRD3. J Exp Bot 65(9):2381–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors thank Director, Joint Director (Research), ICAR-Indian Agricultural Research Institute (IARI), New Delhi; Head, Division of Genetics and Incharge, National Phytotron Facility, IARI, New Delhi, for their support provided to accomplish the research activities.

Funding

This work has been financially supported by grant provided by ICAR-Indian Agricultural Research Institute, New Delhi (Project no- JAN 09 / 16) and DBT (No. BT/PR25565/NER/95/1254/2017) The funding bodies had no role in the design of the study, data analysis interpretation and writing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: DS, KCU, MP, and SC. Performed the experiments: CKS, SS and DPS. Analyzed the data: DS and CKS. Contributed reagents/materials/analysis tools: AK and MP. Wrote the paper: DS, CKS, and JT. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Dharmendra Singh or Madan Pal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Handling Editor: Néstor Carrillo

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 215 kb)

ESM 2

(XLSX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, C.K., Singh, D., Sharma, S. et al. Morpho-physiological characterization coupled with expressional accord of exclusion mechanism in wild and cultivated lentil under aluminum stress. Protoplasma 258, 1029–1045 (2021). https://doi.org/10.1007/s00709-021-01619-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-021-01619-z

Keywords

Navigation