Skip to main content
Log in

Cellulases and pectinases act together on the development of articulated laticifers in Ficus montana and Maclura tinctoria (Moraceae)

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The presence of articulated laticifers in the Moraceae family was recently discovered, which means that the location of pectinase and cellulase activities must be of great importance for their growth. Thus, the present study aimed to determine the role of these enzymes in the laticifer growth in Ficus montana and Maclura tinctoria. Reproductive meristems were collected and fixed in Karnovsky. Pectinase and cellulase labeling was performed in part of the samples, while another part was processed for usual TEM analyses. Pectinase and cellulase activities were detected in the vacuole and close to the middle lamella in both species. The presence of cellulases in the laticifers supports their articulated origin. Therefore, the occurrence of pectinase and cellulase activity in the laticifers points out that these enzymes could act in the dissolution of the transverse walls and in the processes of intrusive growth (through the dissolution of the middle lamella) and cell elongation (through the partial disassembly of components of the wall making it more plastic). Both enzymes are synthesized in the endoplasmic reticulum and transported to the cell wall by exocytosis or stored in the vacuole. The species studied showed a diverse subcellular composition, which is probably related to the species and not to the laticifer type (they present the same type) and to the composition of the latex (they show similar latex composition). We conclude that the presence of pectinases and cellulases can be used as a diagnostic condition for the laticifer types (articulated vs. non-articulated).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agrawal AA, Konno K (2009) Latex: a model for understanding mechanisms, ecology, and evolution of plant defense against herbivory. Annu Rev Ecol Evol Syst 40:311–331

    Article  Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2008) Molecular biology of the cell, 5th edn. Garland Science, New York

    Google Scholar 

  • Allen RD, Nessler CL (1984) Cytochemical localization of pectinase activity in laticifers of Nerium oleander L. Protoplasma 119:74–78

    Article  CAS  Google Scholar 

  • Bal AK (1974) Cellulase. In: Hayat MA (ed) Electron microscopy of enzymes, vol 3. Van Nostrand Reinhold, New York, pp 68–79

    Google Scholar 

  • Bal AK, Verma DPS, Byrne H, Maclachlan GA (1976) Subcellular localization of cellulase in auxin-treated pea. J Cell Biol 69:97–105

    Article  CAS  PubMed  Google Scholar 

  • Barbosa EF, Monge-Fuentes V, Oliveira NB, Tavares R, Xavier ME, Bemquerer MP, Silva LP (2014) Protein characterization of Brosimum gaudichaudii Trécul latex and study of nanostructured latex film formation. IET Nanobiotechnol 8:222–229

    Article  PubMed  Google Scholar 

  • Barik BR, Bhaumik T, Dey AK, Kundu AB (1994) Triterpenoids from Artocarpus heterophyllus. Phytochemistry 35:1001–1004

    Article  CAS  Google Scholar 

  • Cai X, Li W, Yin L (2009) Ultrastructure and cytochemical localization of acid phosphatase of laticifers in Euphorbia kansui Liou. Protoplasma 238:3–10

    Article  CAS  Google Scholar 

  • Canaveze Y, Mastroberti AA, Mariath JEA, Machado SR (2018) Cytological differentiation and cell wall involvement in the growth mechanisms of articulated laticifers in Tabernaemontana catharinensis A.DC. (Apocynaceae). Protoplasma, in press 256:131–146. https://doi.org/10.1007/s00709-018-1284-3

    Article  CAS  PubMed  Google Scholar 

  • Carter CA, Fomey RW, Gray EA, Gehring AM, Schneider TL, Young DB, Lovett CM Jr, Scott L, Messer AC, Richardson DP (1997a) Toxicarioside A. A new cardenolide isolated from Antiaris toxicaria latex-derived dart poison. Assignment of the 1H- and 13C-NMR shifts for an antiarigenin aglycone. Tetrahedron 53:13557–13566

    Article  CAS  Google Scholar 

  • Carter CA, Gray EA, Schneider TL, Lovett CM Jr, Scott L, Messer AC, Richardson DP (1997b) Toxicarioside B and toxicarioside C. New cardenolides isolated from Antiaris toxicaria latex-derived dart poison. Tetrahedron 53:16959–16968

    Article  CAS  Google Scholar 

  • Castelblanque L, Balaguer B, Marti C, Rodríguez JJ, Orozco M, Vera P (2016) Novel insights into the organization of laticifer cells: a cell comprising a unified whole system. Pl Physiol 172:1032–1044

    CAS  Google Scholar 

  • Castelblanque L, Balaguer B, Martí C, Rodríguez JJ, Orozco M, Vera P (2017) Multiple facets of laticifer cells. Plant Signal Behav 12:e1300743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castelblanque L, Balaguer B, Martí C, Orozco M, Vera P (2018) LOL2 and LOL5 loci control latex production by laticifer cells in Euphorbia lathyris. New Phytol 219:1467–1479

    Article  CAS  PubMed  Google Scholar 

  • Castro MM, Machado SR (2012) Células e tecidos secretores. In: Appezzato-da-Glória B, Carmello-Guerreiro SM (eds) Anatomia Vegetal, 3th edn. Editora UFV, Viçosa, pp 169–191

    Google Scholar 

  • Clement WL, Weiblen GD (2009) Morphological evolution in the mulberry family (Moraceae). Syst Bot 34:530–552

    Article  Google Scholar 

  • Conn BJ, Hadiah JT (2009) Nomenclature of tribes within the Urticaceae. Kew Bull 64:349–352

    Article  Google Scholar 

  • Da Cunha M, Costa CG, Machado RD, Miguens FC (1998) Distribution and differentiation of the laticifer system in Chamaesyce thymifolia (L.) Millsp. (Euphorbiaceae). Acta Botanica Neerlandica 47:209–218

    Google Scholar 

  • Dai H, Gan Y, Que D, Wu J, Wen Z, Mei W (2009) A new cytotoxic 19-nor-cardenolide from the latex of Antiaris toxicaria. Molecules 14:3694–3699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Degan FD, Child R, Svendsen I, Ulvskov P (2001) The cleavable N-terminal domain of plant endopolygalacturonases from clade B may be involved in a regulated secretion mechanism. J Biol Chem 276:35297–35304

    Article  CAS  PubMed  Google Scholar 

  • Dickenson PB, Fairbairn JW (1975) The ultrastructure of the alkaloidal vesicles of Papaver somniferum latex. Ann Bot 39:707–712

    Article  Google Scholar 

  • Evert RF (2006) Esau’s plant anatomy—meristems, cells, and tissues of the plant body: their structure, function, and development, 3rd edn. John Wiley & Sons, Inc, Hoboken

    Book  Google Scholar 

  • Fahn A (1979) Secretory tissues in plants. Academic Press, London/ New York/ San Francisco

    Google Scholar 

  • Fineran BA (1982) Distribution and organization of non-articulated laticifers in mature tissues of poinsettia (Euphorbia pulcherrima Willd.). Ann Bot 50:207–220

    Article  Google Scholar 

  • Fineran BA (1983) Differentiation of non-articulated laticifers in poinsettia (Euphorbia pulcherrima Willd.). Ann Bot 52:279–293

    Article  Google Scholar 

  • Fineran BA, Condon JM, Ingerfeld M (1988) An impregnated suberized wall layer in laticifers of the Convolvulaceae, and its resemblance to that in walls of oil cells. Protoplasma 147:42–54

    Article  Google Scholar 

  • Gama TSS, Rubiano VS, Demarco D (2017) Laticifer development and its growth mode in Allamanda blanchetii A. DC. (Apocynaceae). J Torrey Bot Soc 144:303–312

    Article  Google Scholar 

  • Hagel JM, Yeung EC, Facchini PJ (2008) Got milk? The secret life of laticifers. Trends Plant Sci 13:631–639

    Article  CAS  Google Scholar 

  • Heinrich G (1970) Elektronenmikroskopische untersuchung der milchröhren von Ficus elastica. Protoplasma 70:317–323

    Article  Google Scholar 

  • Judd WS, Campbell CS, Kellogg EA, Stevens PF (2009) Sistemática Vegetal, um enfoque filogenético, 3rd edn. Artmed, Porto Alegre

    Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of light osmolality for use in electron microscopy. J Cell Biol 27:137–138

    Google Scholar 

  • Konno K (2011) Plant latex and other exudates as plant defense systems: roles of various defense chemicals and proteins contained therein. Phytochemistry 72:1510–1530

    Article  CAS  Google Scholar 

  • Lazreg-Aref H, Mars M, Fekih A, Aouni M, Said K (2012) Chemical composition and antibacterial activity of a hexane extract of Tunisian caprifig latex from the unripe fruit of Ficus carica. Pharm Biol 50:407–412

    Article  CAS  PubMed  Google Scholar 

  • Lee KB, Mahlberg PG (1999) Ultrastructure and development of nonarticulated laticifers in seedlings of Euphorbia maculata L. J Plant Biol 42:57–62

    Article  Google Scholar 

  • Lewinsohn TM (1991) The geographical distribution of plant latex. Chemoecology 2:64–68

    Article  Google Scholar 

  • Liang S, Wang H, Yang M, Wu H (2009) Sequential actions of pectinases and cellulases during secretory cavity formation in Citrus fruits. Trees 23:19–27

    Article  CAS  Google Scholar 

  • Liu Q, Tang J, Hu M, Liu J, Chen H, Gao H, Wang G, Li S, Hao X, Zhang X, Yao X (2013) Antiproliferative cardiac glycosides from the latex of Antiaris toxicaria. J Nat Prod 76:1771–1780

    Article  CAS  PubMed  Google Scholar 

  • Lorenzi H (1992) Árvores Brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil, vol 1. Editora Plantarum, Nova Odessa

    Google Scholar 

  • Marinho CR, Teixeira SP (2019) Novel reports of laticifers in Moraceae and Urticaceae: revisiting synapomorphies. Plant Syst Evol 305:13–31

    Article  CAS  Google Scholar 

  • Marinho CR, Martucci MEP, Gobbo-Neto L, Teixeira SP (2018) Chemical composition and secretion biology of the floral bouquet in legume trees. Bot J Linn Soc 187:5–25

    Article  Google Scholar 

  • Marty F (1978) Cytochemical studies on GERL, provacuoles, and vacuoles in root meristematic cells of Euphorbia. PNAS 75:852–856

    Article  CAS  PubMed  Google Scholar 

  • Marty F (1999) Plant vacuoles. Plant Cell 11:587–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mekkriengkrai D, Ute K, Swiezewska E, Chojnacki T, Tanaka Y, Sakdapipanich JT (2004) Structural characterization of rubber from jackfruit and Euphorbia as a model of natural rubber. Biomacromolecules 5:2013–2019

    Article  CAS  PubMed  Google Scholar 

  • Mesquita JF, Santos Dias JD (1984) Ultrastructural and cytochemical study of the laticifers of Cannabis sativa L. Bol Soc Brot 57:337–356

    Google Scholar 

  • Metcalfe CR (1983) Laticifers and latex. In: Metcalfe CR, Chalk L (eds) Anatomy of the dicotyledons: wood structure and conclusion of the general introduction, vol 2. Clarendon Press, Oxford, pp 70–81

    Google Scholar 

  • Metcalfe CR, Chalk L (1950) Anatomy of the dicotyledons: leaves, stem and wood in relation to taxonomy with notes on economic uses, vol 2. Clarendon Press, Oxford

    Google Scholar 

  • Miguez E, Tavares M (2011) The NMR study of the latex extracted from Brosimum parinarioides. Chem Chem Technol 5:209–213

    Google Scholar 

  • Moretti C, Gaillard Y, Grenand P, Bevalot F, Prevosto J (2006) Identification of 5-hydroxy-tryptamine (bufotenine) in takini (Brosimum acutifolium Huber subsp. acutifolium C.C. Berg, Moraceae), a shamanic potion used in the Guiana Plateau. J Ethnopharmacol 106:198–202

    Article  CAS  PubMed  Google Scholar 

  • Nakashima J, Endo S, Fukuda H (2004) Immunocytochemical localization of polygalacturonase during tracheary element differentiation in Zinnia elegans. Planta 218:729–739

    Article  CAS  PubMed  Google Scholar 

  • Nessler CL, Mahlberg PG (1977) Ontogeny and cytochemistry of alkaloidal vesicles in Laticifers of Papaver somniferum L. (Papaveraceae). Am J Bot 64:541–551

    Article  Google Scholar 

  • Nessler CL, Mahlberg PG (1981) Cytochemical localization of cellulase activity in articulated, anastomosing laticifers of Papaver somniferum L. (Papaveraceae). Am J Bot 68:730–732

    Article  Google Scholar 

  • Oliveira AP, Silva LR, Andrade PB, Valentão P, Silva BM, Gonçalves RF, Pereira JA, Pinho PG (2010) Further insight into the latex metabolite profile of Ficus carica. J Agric Food Chem 58:10855–10863

    Article  CAS  PubMed  Google Scholar 

  • Pilatzke-Wunderlich I, Nessler CL (2001) Expression and activity of cell-wall-degrading enzymes in the latex of opium poppy, Papaver somniferum L. Plant Mol Biol 45:567–576

    Article  CAS  PubMed  Google Scholar 

  • Rachmilevitz T, Fahn A (1982) Ultrastructure and development of the laticifers of Ficus carica L. Ann Bot 49:13–22

    Article  Google Scholar 

  • Roy AT, Deepesh N (1992) Studies on differentiation of laticifers through light and electron microscopy in Calotropis gigantea (Linn.) R.Br. Ann Bot 70:443–449

    Article  Google Scholar 

  • Sacchetti G, Ballero M, Serafini M, Romagnoli C, Bruni A, Poli F (1999) Laticifer tissue distribution and alkaloid location in Vinca sardoa (Stearn) Pign. (Apocynaceae), an endemic plant of Sardinia (Italy). Phyton 39:265–275

    Google Scholar 

  • Sheldrake AR (1969) Cellulase in latex and its possible significance in cell differentiation. Planta 89:82–84

    Article  CAS  PubMed  Google Scholar 

  • Stevens P F (2001 onwards). Angiosperm phylogeny website, version 14, July 2017 [and more or less continuously updated since]. http://www.mobot.org/MOBOT/research/APweb/. Accessed 2 October 2017

  • Stockstill BL, Nessler CL (1986) Ultrastructural observations on the nonarticulated, branched laticifers in Nerium oleander L. (Apocynaceae). Phytomorphology 36:347–355

    Google Scholar 

  • Sytsma KJ, Morawetz J, Pires JC, Nepokroeff M, Conti E, Zjhra M, Hall JC, Chase MW (2002) Urticalean rosids: circumscription, rosid ancestry, and phylogenetics based on rbcL, trnL-F, and ndhF sequences. Am J Bot 89:1531–1546

    Article  CAS  PubMed  Google Scholar 

  • The Plant List (2013) Version 1.1 http://www.theplantlist.org/. Accessed 2 October 2017

  • Wang XY, Guo GQ, Nie XW, Zheng GC (1998) Cytochemical localization of cellulase activity in pollen mother cells of David lily during meiotic prophase I and its relation to secondary formation of plasmodesmata. Protoplasma 204:128–138

    Article  CAS  Google Scholar 

  • Wilson KJ, Mahlberg PG (1980) Ultrastructure of developing and mature nonarticulated laticifers in the milkweed Asclepias syriaca L. (Asclepiadaceae). Am J Bot 67:1160–1170

    Article  Google Scholar 

  • Wilson KJ, Nessler CL, Mahlberg PG (1976) Pectinase in Asclepias latex and its possible role in laticifer growth and development. Am J Bot 63:1140–1144

    Article  CAS  Google Scholar 

  • Wu H, Yang M (2005) Reduction in vacuolar volume in the tapetal cells coincides with conclusion of the tetrad stage in Arabidopsis thaliana. Sex Plant Reprod 18:173–178

    Article  CAS  Google Scholar 

  • Wu ZY, Monro A, Milne RI, Wang H, Yi TS, Liu J, Li DZ (2013) Molecular phylogeny of the nettle family (Urticaceae) inferred from multiple loci of three genomes and extensive generic sampling. Mol Phylogenet Evol 69:814–827

    Article  PubMed  Google Scholar 

  • Yang M-Q, van Velzen R, Bakker FT, Sattarian A, Li D-Z, Yi T-S (2013) Molecular phylogenetics and character evolution of Cannabaceae. Taxon 62:473–485

    Article  Google Scholar 

  • Yu CH, Guo GQ, Nie XW, Zheng GC (2004) Cytochemical localization of pectinase activity in pollen mother cells of tobacco during meiotic prophase I and its relation to the formation of secondary plasmodesmata and cytoplasmic channels. Acta Bot Sin 46:1443–1453

    Google Scholar 

  • Zhao X, Si J, Miao Y, Peng Y, Wang L, Cai X (2014) Comparative proteomics of Euphorbia kansui Liou milky sap at two different developmental stages. Plant Physiol Biochem 79:60–65

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Maria Dolores Seabra Ferreira and José Augusto Maulin (FMRP/USP) for technical assistance.

Funding

This work was supported by Sao Paulo Research Foundation, Fapesp (grant numbers 2013/21794-5, 2014/07453-3 and 2018/03691-8), National Council for Scientific and Technological Development, CNPq (grant number 303493/2015-1), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Capes (code 001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Pádua Teixeira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Alexander Schulz

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marinho, C.R., Teixeira, S.P. Cellulases and pectinases act together on the development of articulated laticifers in Ficus montana and Maclura tinctoria (Moraceae). Protoplasma 256, 1093–1107 (2019). https://doi.org/10.1007/s00709-019-01367-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-019-01367-1

Keywords

Navigation