Skip to main content
Log in

An impregnated suberized wall layer in laticifers of theConvolvulaceae, and its resemblance to that in walls of oil cells

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The cell wall in laticifers of theConvolvulaceae, Calystegia silvatica, C. soldanella, C. tuguriorum, Convolvulus cneorum, C. verecundus, C. sabaticus subsp.mauritanicus, andIpomoea indica, contains an impregnated layer that surrounds the cells. The impregnated layer lies inside the primary wall of the laticifer, separated from the protoplast by a third (tertiary) layer of variable thickness. Histochemical and cytochemical staining give a positive reaction for suberin. The layer is often differentiated into dark and translucent regions, the latter frequently being composed of lamellae. The ultrastructure of this layer and its position within the cell wall of the laticifer is comparable to the condition found in oil cells where the walls contain a suberized layer. A suberized layer within the wall is unique for a laticifer system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amelunxen F, Gronau G (1969) Elektronmikroskopische Untersuchungen an den Ölzellen vonAcorus calamus L. Z Pflanzenphysiol 60: 156–168

    Google Scholar 

  • Artschwager E (1924) On the anatomy of the sweet potato root, with notes on internal breakdown. J Agric Res Washington DC 27: 157–166

    Google Scholar 

  • - (1943) Contribution to the morphology and anatomy of guayule (Parthenium argentatum). US Dept Agric Tech Bull No 842, 33 pp

  • Backhaus RA, Walsh S (1983) The ontogeny of rubber formation in guayule (Parthenium argentatum) Gray. Bot Gaz 144: 391–400

    Google Scholar 

  • Behnke H-D, Herrmann S (1978) Fine structure and development of laticifers inGnetum gnemon L. Protoplasma 95: 371–384

    Google Scholar 

  • Belarbi-Halli R, Dexheimer J, Mangenot F (1984) Le pneumatode chezPhoenix dactylifera. II Ultrastructure de la paroi de la cellule aérifère chez des pneumatodes jeunes provenant des cultures axeniques. Can J Bot 62: 972–981

    Google Scholar 

  • —,Mangenot F (1986) Bayoud disease of date palm: ultrastructure of root infection through pneumatodes. Can J Bot 64: 1703–1711

    Google Scholar 

  • Biggs AR, Stobbs LW (1986) Fine structure of the suberized cell walls in the boundary zone and necrophylactic periderm in wounded peach bark. Can J Bot 64: 1606–1610

    Google Scholar 

  • Bruni A, Dall'olio D, Fasulo MP (1974) Morphological aspects of the nuclei in mature articulated laticifers ofCalystegia soldanella. Experientia 30: 1390–1391

    PubMed  Google Scholar 

  • Condon JM (1985) Structural studies of latex systems in New Zealand plants, native and introduced. M Sc Thesis, University of Canterbury, New Zealand

    Google Scholar 

  • Courtoy R, Simar LJ (1974) Importance of controls for the demonstration of carbohydrates in electron microscopy with the silver methenamine or the thiocarbohydrazide-silver proteinate methods. J Microsc 100: 199–211

    PubMed  Google Scholar 

  • Czapek F (1894) Zur Kenntnis des Milchsaftsystems der Convolvulaceen. Oesterr Acad Wiss Sitzungsber Abt I 103: 87–121

    Google Scholar 

  • Dell B, McComb AJ (1978) Plant resins-their formation, secretion and possible functions. In:Woolhouse HW (ed) Advances in botanical research, vol 6. Academic Press, London, pp 46–112

    Google Scholar 

  • Eilert U, Nesbitt LR, Constabel F (1985) Laticifers and latex in fruits of periwinkle,Catharanthus roseus. Can J Bot 63: 1540–1546

    Google Scholar 

  • Esau K (1953) Plant anatomy. Wiley, New York, and Chapman & Hall, London, 735 pp

    Google Scholar 

  • — (1965) Plant anatomy, 2nd edn. Wiley, New York London Sydney, 767 pp

    Google Scholar 

  • —,Kosakai H (1975) Laticifers inNelumbo nucifera Gaertn: distribution and structure. Ann Bot 39: 713–719

    Google Scholar 

  • Espelie KE, Wattendorff H, Kolattukudy PE (1982) Composition and ultrastructure of the suberized cell wall of isolated crystal idioblasts fromAgave americana L. leaves. Planta 155: 166–175

    Google Scholar 

  • Fahn A (1979) Secretory tissues in plants. Academic Press, London, 302 pp

    Google Scholar 

  • — (1982) Plant anatomy, 3rd edn. Pergamon Press, Oxford, 544 pp

    Google Scholar 

  • Fineran BA, Condon JM (1988) The stabilization of latex in laticifers of theConvolvulaceae: application of freezing methods for scanning electron microscopy. Can J Bot 66: 1217–1226

    Google Scholar 

  • Gilliland MG, van Staden J (1983) Detection of rubber in guayule (Parthenium argentatum Gray) at the ultrastructural level. Z Pflanzenphysiol 110: 285–291

    Google Scholar 

  • Giordani R (1979) Ultrastructure des laticifères articulès de la laitue. Comp Rend Acad Sci (Paris) 288: 615–618

    Google Scholar 

  • Grelot P (1903) Recherches sur les laticifères de la fleur des Convolvulacées. Bot Centralbl 92: 83

    Google Scholar 

  • Haberlandt G (1914) Physiological plant anatomy. Macmillan, London, 777 pp

    Google Scholar 

  • Hattersley PW, Browning AJ (1981) Occurrence of the suberized lamella in leaves of grasses of different photosynthetic types. I. In parenchymatous bundle sheaths and PCR (“Kranz”) sheaths. Protoplasma 109: 371–401

    Google Scholar 

  • Hébant C (1981) Ontogénie des laticifères du système primaire de l'Hevea brasiliensis: une étude ultrastructurale et cytochemique. Can J Bot 59: 974–985

    Google Scholar 

  • Heide-Jørgensen HS (1978) The xeromorphic leaves ofHakea sauveolens R. Br. II. Structure of epidermal cells, cuticle development and ectodesmata. Bot Tidsskr 72: 227–244

    Google Scholar 

  • Höhnel von F (1878) Über den Kork und verkorkte Gewebe überhaupt. Sitzungsber Acad Wiss Math Naturw Abt I (Wien) 76: 507–662

    Google Scholar 

  • Holloway PJ (1982) Structure and histochemistry of plant cuticular membranes: an overview. In:Cutler DF, Alvin KL, Price CE (eds) The plant cuticle. Academic Press, London (Linn Soc Symp Ser, vol 10), pp 1–32

    Google Scholar 

  • —,Brown GA, Wattendorff J (1981) Ultrahistochemical detection of epoxides in plant cuticular membranes. J Exp Bot 32: 1051–1066

    Google Scholar 

  • Juniper BE, Cox GC, Gilchrist AJ, Williams PR (1970) Techniques for plant electron microscopy. Blackwell, Oxford Edinburgh, 108 pp

    Google Scholar 

  • Karas I, McCully ME (1973) Further studies on the histology of lateral root development inZea mays. Protoplasma 77: 243–269

    Google Scholar 

  • Kolattukudy PE (1980) Bipolyester membranes of plants: cutin and suberin. Science 208: 990–1000

    Google Scholar 

  • — (1981) Structure, biosynthesis, and biodegradation of cutin and suberin. Ann Rev Plant Physiol 32: 539–597

    Google Scholar 

  • Maire R (1913) Un nouveauConvolvulus algérien. Bull Soc Bot France 60: 253–256

    Google Scholar 

  • Maron R, Fahn A (1979) Ultrastructure and development of oil cells inLaurus nobilis L. leaves. Bot J Linn Soc 78: 31–40

    Google Scholar 

  • Marty F (1968) Infrastructure des laticifères différenciés d'Euphorbia characias. Comp Rend Acad Sci (Paris) 267: 299–302

    Google Scholar 

  • Mauseth JD (1978 a) The structure and development of an unusual type of articulated laticifer inMammillaria (Cactaceae). Am J Bot 48: 415–420

    Google Scholar 

  • — (1978 b) Further studies of the unusual type of laticiferous canals inMammillaria (Cactaceae): structure and development of the semi-milky type. Am J Bot 65: 1098–1102

    Google Scholar 

  • Mérida J, Schönherr J, Schmidt HW (1981) Fine structure of plant cuticles in relation to water permeability: the fine structure of the cuticule ofCavia miniata Reg. leaves. Planta 152: 259–267

    Google Scholar 

  • Metcalfe CR (1967) Distribution of latex in the plant kingdom. Econ Bot 21: 115–127

    Google Scholar 

  • — (1983) Secretory structures: cells, cavities and canals-in leaves and stems. In:Metcalfe CR, Chalk L (eds) Anatomy of the dicotyledons, vol 2, wood structure and conclusions of general introduction, 2nd edn. Clarendon Press, Oxford, pp 70–81

    Google Scholar 

  • —,Chalk L (1950) Anatomy of the dicotyledons, 2 vols. Clarendon Press, Oxford, 1500 pp

    Google Scholar 

  • Mirande M (1898) Sur les Laticifères et les tubes criblés des Cuscutes mongynées. J Bot 12: 70–80

    Google Scholar 

  • Moor H (1959) Platin-Kohle-Abdrucktechnik angewandt auf den Feinbau der Milchröhren. J Ultrastruct Res 2: 393–422

    Google Scholar 

  • O'Brien TP, Kuo J (1975) Development of the suberized lamellae in the mestome sheath of wheat leaves. Aust J Bot 23: 783–794

    Google Scholar 

  • —,McCully ME (1981) The study of plant structure: principles and selected methods. Termarcharphi Pty Ltd, Melbourne, Australia

    Google Scholar 

  • Olesen P (1978) Studies on the physiological sheaths in roots. I. Ultrastructure of the exodermis inHoya carnosa L. Protoplasma 94: 325–340

    Google Scholar 

  • Paliwal GS, Kavalhekar AK (1971) Anatomy of vegetative food storage organs. Acta Agron Acad Sci Hung 20: 261–270

    Google Scholar 

  • Peterson CA, Peterson RL, Robards AW (1978) A correlated histochemical and ultrastructural study of the epidermis and hypodermis of onion roots. Protoplasma 96: 1–21

    Google Scholar 

  • Platt-Aloia KA, Oross JW, Thomson WW (1983) Ultrastructural study of the development of oil cells in the mesocarp of avocado fruit. Bot Gaz 144: 49–55

    Google Scholar 

  • Postek MT, Tucker SC (1983) Ontogeny and ultrastructure of secretory oil cells inMagnolia grandiflora L. Bot Gaz 144: 501–512

    Google Scholar 

  • Rachmilevitz T, Fahn A (1982) Ultrastructure and development of the laticifers ofFicus carica L. Ann Bot 49: 13–22

    Google Scholar 

  • Robards AW, Clarkson DT, Sanderson J (1979) Structure and permeability of the epidermal/hypodermal layers of the sand sedge (Carex arenaria L.). Protoplasma 101: 331–347

    Google Scholar 

  • —,Jackson SM, Clarkson DT, Sanderson J (1973) The structure of barley roots in relation to the transport of ions into the stele. Protoplasma 77: 291–311

    Google Scholar 

  • Schmidt HW, Schönherr J (1982) Fine structure of isolated and non-isolated potato tuber periderm. Planta 154: 76–80

    Google Scholar 

  • Scott FM (1950) Internal suberization of tissues. Bot Gaz 111: 378–394

    Google Scholar 

  • Scott MG, Peterson RL (1979) The root endodermis inRanunculus acris. II. Histochemistry of the endodermis and the synthesis of phenolic compounds in roots. Can J Bot 57: 1063–1077

    Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26: 31–43

    Article  PubMed  Google Scholar 

  • Solereder H (1908) Systematic anatomy of the dicotyledons, vol 1 (translated byDoodle LA andFritsch FE, and revised byScott DH). Clarendon Press, Oxford, 644 pp

    Google Scholar 

  • Thiéry JP (1967) Mise en evidence des polysaccharides sur coupes fines en microscopie électronique. J Microsc (Paris) 6: 987–1018

    Google Scholar 

  • Tippet JT, O'Brien TP (1976) The structure of eucalypt roots. Aust J Bot 24: 619–632

    Google Scholar 

  • Trecul MA (1865) Observations sur les laticifères des Convolvulacées. Comp Rend Hebdom Seances 60: 825–829

    Google Scholar 

  • — (1866) Résumé d'observations sur les vaisseaux et les sucs propres. Ann Sci Nat Bot 5: 44–79

    Google Scholar 

  • Vogl A (1863) Beiträge zur Anatomie und Histologie von der unterirdischen Theile vonConvolvulus arvensis. Verh K Zool Bot Ges (Wien) 13: 257–300

    Google Scholar 

  • — (1866–7) Beiträge zur Kenntniss der Milchsaftorgane. Pringsheim Jahrb Wiss Bot 5: 31–77

    Google Scholar 

  • Wattendorf J (1974 a) Ultrahistochemical reactions of the suberized wall inAcorus, Acacia and Larix. Z Pflanzenphysiol 73: 214–225

    Google Scholar 

  • — (1974 b) The formation of cork cells in the periderm ofAcacia Senegal Willd. and their ultrastructure during suberin deposition. Z Pflanzenphysiol 72: 119–134

    Google Scholar 

  • — (1976 a) Ultrastructure of the suberized styloid crystal cells inAgave leaves. Planta 128: 163–165

    Google Scholar 

  • — (1976 b) A third type of raphide crystal in the plant kingdom: six sided raphides with laminated sheaths inAgave americana L. Planta 130: 303–311

    Google Scholar 

  • — (1978) Feinbau und Entwicklung der Calcium-Kristallzellen mit suberinähnlichen Kristallscheiden in der Rinde und im sekundären Holz vonAcacia Senegal Willd. Protoplasma 95: 193–206

    Google Scholar 

  • —,Holloway PJ (1980) Studies on the ultrastructure and histochemistry of plant cuticles: the cuticular membrane ofAgave americana L.in situ. Ann Bot 46: 13–28

    Google Scholar 

  • Wilson KJ, Mahlberg PG (1980) Ultrastructure of developing and mature nonarticulated laticifers in the milkweedAsclepias syriaca L. Am J Bot 67: 1160–1170

    Google Scholar 

  • Zacharias E (1879) Über Secretbehälter mit verkorkten Membranen. Bot Zeit 37: 617–628

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fineran, B.A., Condon, J.M. & Ingerfeld, M. An impregnated suberized wall layer in laticifers of theConvolvulaceae, and its resemblance to that in walls of oil cells. Protoplasma 147, 42–54 (1988). https://doi.org/10.1007/BF01403876

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01403876

Keywords

Navigation