Skip to main content
Log in

Ultrastructural aspects of pollen ontogeny in an endangered plant species, Pancratium maritimum L. (Amaryllidaceae)

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Pollen ontogeny in Pancratium maritimum L. was studied from the sporogenous cell to mature pollen grain stages using transmission electron, scanning electron, and light microscopy to determine whether the pollen development in P. maritimum follows the basic scheme in angiosperms or not. In the course of microsporogenesis and microgametogenesis, special attention was given to the considerable ultrastructural changes that are observed in the cytoplasm of microsporocytes, microspores, and mature pollen grains throughout the successive stages of pollen development. Microsporocyte differentiation concerning number and ultrastructure of organelles facilitates the transition of microsporocytes from the sporophytic phase to the gametophytic phase. However, cytoplasmic differentiation of generative and vegetative cells supports their functional distinctness and pollen maturation. Although microsporogenesis and microgametogenesis in P. maritimum generally follow the usual angiosperm pattern, abnormalities such as formation of unreduced gametes were observed. During normal microsporogenesis, meiocytes undergo meiosis and successive cytokinesis, resulting in the formation of isobilateral, decussate, and linear tetrads. Subsequent to the development of free and vacuolated microspores, the first mitotic division occurs and bicellular monosulcate pollen grains are produced. Pollen grains are shed from the anther at binucleate stage. During pollen ontogeny, three periods of vacuolization were observed: in meiocytes, in mononucleate free microspores, and in the generative cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Asai Y, Takeda K, Kamiyama T, Ogawa S (2013) Reddish-brown granules observed within the cytoplasm of generative cells of pollen grains in Hymenocallis littoralis (Amaryllidaceae). Cytologia 78(3):313–320

    Article  Google Scholar 

  • Balestri E, Cinelli F (2004) Germination and early-seedling establishment capacity of Pancratium maritimum L. (Amaryllidaceae) on coastal dunes in the north-western Mediterranean. J Coast Res 203:761–770

    Article  Google Scholar 

  • Bednarska E (1988) Ultrastructural transformations in the cytoplasm of differentiating Hyacinthus orientalis L. pollen cells. Acta Soc Bot Pol 57:235–245

    Article  Google Scholar 

  • Berkov S, Evstatieva L, Popov S (2004) Alkaloids in Bulgarian Pancratium maritimum L. Z Naturforsch C 59:65–69

    Article  CAS  PubMed  Google Scholar 

  • Bird J, Porter EK, Dickinson HG (1983) Events in the cytoplasm during male meiosis in Lilium. J Cell Sri 59:27–42

    CAS  Google Scholar 

  • Bozzola JJ, Russell LD (1998) Electron microscopy: principles and techniques for biologist. Jones and Barlett, Boston

    Google Scholar 

  • Clément C, Chavant L, Burrus M, Audran JC (1994) Anther starch variations in Lilium during pollen development. Sex Plant Reprod 7:347–356

    Article  Google Scholar 

  • Craig EL, Frojola WJ, Greider MH (1962) An embedding technique for electron microscopy using Epon 812. J Cell Biol 12(1):190–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cresti M, Ciampollini F, Kapil RN (1984) Generative cells of some angiosperms with particular emphasis on their microtubules. J Submicrosc Cytol 16:317–326

    Google Scholar 

  • De Castro O, Brullo S, Colombo P, Jury S, De Luca P, Di Maio A (2012) Phylogenetic and biogeographical inferences for Pancratium (Amaryllidaceae), with an emphasis on the Mediterranean species based on plastid sequence data. Bot J Linn Soc 170:12–28

    Article  Google Scholar 

  • De Storme N, Geelen D (2013) Sexual polyploidization in plants—cytological mechanisms and molecular regulation. New Phytol 198:670–684

    Article  PubMed  PubMed Central  Google Scholar 

  • Dickinson HG (1981) The structure and chemistry of plastid differentiation during male meiosis in Lilium henryi. J Cell Sci 52:223–241

    CAS  PubMed  Google Scholar 

  • Dickinson HG, Heslop-Harrison J (1970a) The behaviour of plastids during meiosis in the microsporocyte of Lilium longiflorum Thunb. Cytobios 2:103–118

    Google Scholar 

  • Dickinson HG, Heslop-Harrison J (1970b) The ribosome cycle, nucleoli and cytoplasmic nucleoloids during meiosis in the anther of Lilium. Protoplasma 69:187–200

    Article  Google Scholar 

  • Dutt BSM (1971) Embryology of Pancratium longiflorum. Phytomorphology 20(1):1–5

    Google Scholar 

  • Eisikowitch D, Galil J (1971) Effect of wind on the pollination of Pancratium maritimum L. (Amaryllidaceae) by hawkmoths (Lepidoptera: Sphingidae). J Anim Ecol 40(3):673–678

    Article  Google Scholar 

  • Ekici N, Dane F (2012a) Ultrastructural studies on the sporogenous tissue and anther wall of Leucojum aestivum (Amaryllidaceae) in different developmental stages. An Acad Bras Cienc 84(4):951–960

    Article  PubMed  Google Scholar 

  • Ekici N, Dane F (2012b) Microsporogenesis, pollen mitosis and in vitro pollen tube growth in Leucojum Aestivum (Amaryllidaceae). In: Mworia J (ed) Botany. In Tech, Rijeka, pp 173–190

    Google Scholar 

  • Ekici N, Dane F (2012c) Some histochemical features of anther wall of Leucojum aestivum (Amaryllidaceae) during pollen development. Biolog Sect Bot 67(5):857–866

    Google Scholar 

  • Gabarayeva NI, Grigorjeva VV, Marquez G (2011) Ultrastructure and development during meiosis and the tetrad period of sporogenesis in the leptosporangiate fern Alsophila setosa (Cyatheaceae) compared with corresponding stages in Psilotum nudum (Psilotaceae). Grana 50(4):235–261

    Article  Google Scholar 

  • Galati BG, Zarlavsky G, Rosenfeldt S, Gotelli MM (2012) Pollen ontogeny in Magnolia liliflora Desr. Plant Syst Evol 298:527–534

    Article  Google Scholar 

  • Goldberg RB, Beals TP, Sanders PM (1993) Anther development: basic principles and practical applications. Plant Cell 5:1217–1229

  • Gómez-Rodríguez VM, Rodríguez-Garay B, Barba-Gonzalez R (2012) Meiotic restitution mechanisms involved in the formation of 2n pollen in Agave tequilana Weber and Agave angustifolia Haw. SpringerPlus 1:17 http://www.springerplus.com

  • Gotelli M, Galati B, Medan D (2012) Pollen, tapetum, and orbicule development in Colletia paradoxa and Discaria americana (Rhamnaceae). Scientific World J, vol 2012, doi:10.1100/2012/948469

  • Gotelli MM, Galati BG, Zarlavsky G, Medan D (2015) Pollen and microsporangium development in Hovenia dulcis (Rhamnaceae): a different type of tapetal cell ultrastructure. Protoplasma 1-9. doi:10.1007/s00709-015-0870-x

  • Hanaichi T, Sato T, Iwamoto T, Malavasiyamashiro J, Hoshiro M, Mizunu N (1986) A stable lead by modification of Sato method. J Electron Microsc 35(3):304–306

    CAS  Google Scholar 

  • Hayat MA (2000) Principles and techniques of electron microscopy. Biological application, 4th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Hesse M, Halbritter H, Zetter R, Weber M, Buchner R, Frosch-Radivo A, Ulrich S (2009) Pollen terminology. An illustrated handbook. Springer, New York

    Google Scholar 

  • Holford  P, Croft  J, Newbury HJ (1991). Structural studies of microsporogenesis in fertile and male-sterile onions (Allium cepa L.) containing the cms-S cytoplasm. Theoretical and Applied Genetics, 82(6):745–755

  • Howel G, Prakash N (1990) Embryology and reproductive ecology of the Darling Lily, Crinum flaccidum Herbert. Aust J Bot 38(5):433–444

    Article  Google Scholar 

  • Ibrahim SRM, Mohamed GA, Shaala LA, Youssef DTA, El Sayed KA (2013) New alkaloids from Pancratium maritimum. Planta Med 79:1480–1484

    Article  CAS  PubMed  Google Scholar 

  • Islam AKMR, Shepherd KW (1980) Meiotic restitution in wheat-barley hybrids. Chromosoma 79:363–372

    Article  Google Scholar 

  • Jensen WA (1962) Botanical histochemistry. W. H. Freeman and Company, San Francisco

    Google Scholar 

  • Larson DA (1965) Fine-structural changes in the cytoplasm of germinating pollen. American Journal of Botany 52(2):139–154

  • Li N, Zhang DS, Liu HS, Yin CS, Li XX, Liang WQ, Yuan Z, Xu B, Chu HW, Wang J, Wen TQ, Huang H, Luo D, Ma H, Zhang DB (2006) The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18:2999–3014

  • Liu L (2012) Ultrastructural study on dynamics of plastids and mitochondria during microgametogenesis in watermelon. Micron 43(2):412–417

    Article  PubMed  Google Scholar 

  • Mabberley DJ (2008) Mabberley’s plant-book, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Mason AS, Pires JC (2015) Unreduced gametes: meiotic mishap or evolutionary mechanism? Trends Genet 31:5–10

    Article  CAS  PubMed  Google Scholar 

  • Mason A, Nelson M, Yan G, Cowling W (2011) Production of viable male unreduced gametes in Brassica interspecific hybrids is genotype specific and stimulated by cold temperatures. BMC Plant Biol 11:103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medrano M, Guitian P, Guitian J (1999) Breeding system and temporal variation in fecundity of Pancratium maritimum L. (Amaryllidaceae). Flora 194:13–19

    Google Scholar 

  • Medrano M, Guitian P, Guitian J (2000) Patterns of fruit and seed set within inflorescences of Pancratium maritimum (Amaryllidaceae): nonuniform pollination, resource limitation, or architectural effects. Am J Bot 87:493–501

    Article  CAS  PubMed  Google Scholar 

  • Mill RR (1984) Pancratium L. In: Davis PH (ed) Flora of Turkey and the East Aegean Islands, vol 8. Edinburgh University Press, Edinburgh, pp 380–381

    Google Scholar 

  • Mirzaghaderi G, Fathi N (2015) Unreduced gamete formation in wheat: Aegilops triuncialis interspecific hybrids leads to spontaneous complete and partial amphiploids. Euphytica 206:67–75

    Article  Google Scholar 

  • Mursalimov S, Deineko E (2012) An ultrastructural study of microsporogenesis in tobacco line SR1. Biologia 67(2):369–376

    Article  CAS  Google Scholar 

  • Oybak Dönmez E, Işık S (2008) Pollen morphology of Turkish Amaryllidaceae, Ixioliriaceae and Iridaceae. Grana 47:15–38

    Article  Google Scholar 

  • Pacini E, Juniper B (1984) The ultrastructure of pollen grain development in Lycopersicum peruvianum. Caryologia 37:21–50

    Article  Google Scholar 

  • Polowick PL, Sawhney VK (1992) Ultrastructural changes in the cell wall, nucleus and cytoplasm of pollen mother cells during meiotic prophase in Lycopersicon esculentum Mill. Protoplasma 169:139–147

    Article  Google Scholar 

  • Quilichini TD, Douglas CJ, Samuels AL (2014) New views of tapetum ultrastructure and pollen exine development in Arabidopsis thaliana. Ann Bot 114(6):1189–1201

    Article  PubMed  PubMed Central  Google Scholar 

  • Raghavan V (1997) Molecular embryology of flowering plants. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Raymúndez UMB, Escala JM, Xena de Enrech N (2008) Microsporogenesis in Hymenocallis caribaea (L.) Herb. (Amaryllidaceae). Acta Bot Venez 31(2):409–424

    Google Scholar 

  • Reynolds TL (1984) An ultrastructural and stereological analysis of pollen grains of Hyoscyamus niger during normal ontogeny and induced embryogenic development. Am J Bot 71:490–504

    Article  Google Scholar 

  • Rodkiewicz B, Bednara J, Kuras M, Mostowska A (1988) Organelles and cell walls of microsporocytes in a cycad Stangeria during meiosis I. Phytomorphol 38(2,3):99–110

    Google Scholar 

  • Russel SD, Cass P (1981) Ultrastructure of the sperm of Plumbago zeylanica. I. Cytology and association with the vegetative nucleus. Protoplasma 107:85–107

    Article  Google Scholar 

  • Sanaa A, Ben Fadhel N (2010) Genetic diversity in mainland and island populations of the endangered Pancratium maritimum L. (Amaryllidaceae) in Tunisia. Sci Hortic 125:74074

    Article  Google Scholar 

  • Sanaa A, Boulila A, Boussaid M, Ben Fadhel N (2014) Genetic diversity, population structure and linkage disequilibrium analysis in the endangered Tunisian Pancratium maritimum Linnaeus (Amaryllidaceae) populations. Afr J Ecol. doi:10.1111/aje.12202

    Google Scholar 

  • Sanger JM, Jackson WT (1971a) Fine structure study of pollen development in Haemanthus katherinae Baker. I. Formation of vegetative and generative cells. J Cell Sci 8:289–301

    CAS  PubMed  Google Scholar 

  • Sanger JM, Jackson WT (1971b) Fine structure study of pollen development in Haemanthus katherinae Baker. II. Microtubules and elongation of the generative cells. J Cell Sci 8:303–315

    CAS  PubMed  Google Scholar 

  • Sanger JM, Jackson WT (1971c) Fine structure study of pollen development in Haemanthus katherinae Baker. III. Changes in organelles during development of vegetative cell. J Cell Sci 8:317–329

    CAS  PubMed  Google Scholar 

  • Schmidt A, Schmid MW, Grossniklaus U (2015) Plant germline formation: common concepts and developmental flexibility in sexual and asexual reproduction. Development 142:229–241

    Article  CAS  PubMed  Google Scholar 

  • Schröder MB (1985) Ultrastructural studies on plastids of generative and vegetative cells in Liliaceae. 3. Plastid distribution during pollen development in Gasteria verrucosa (Mill.) H. Duval. Protoplasma 124:123–129

    Article  Google Scholar 

  • Schröder MB (1986) Ultrastructural studies on plastids of generative and vegetative cells in Liliaceae 5. The behavior of plastids during pollen development in Chlorophytum comosum (Thunb.) Jacques. Theor Appl Genet 72:840–844

    Article  PubMed  Google Scholar 

  • Şenel G, Özkan M, Kandemir N (2002) A karyological investigation on some rare and endangered species of Amaryllidaceae in Turkey. Pak J Bot 34(3):229–235

    Google Scholar 

  • Shi S, Ding D, Mei S, Wang J (2010) A comparative light and electron microscopic analysis of microspore and tapetum development in fertile and cytoplasmic male sterile radish. Protoplasma 241(1-4):37–49

    Article  PubMed  Google Scholar 

  • Sun M, Ganders FR (1987) Microsporogenesis in male-sterile and hermaphroditic plants of nine gynodioecious taxa of Hawaiian Bidens (Asteraceae). American journal of botany 209-217

  • Tsou CH, Cheng PC, Tseng CM, Yen HJ, Fu YL, You TR, Walden DB (2015) Anther development of maize (Zea mays) and long stamen rice (Oryza longistaminata) revealed by cryo-SEM, with foci on locular dehydration and pollen arrangement. Plant Reprod 28(1):47–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tütüncü Konyar S (2014) Ultrastructure of microsporogenesis and microgametogenesis in Campsis radicans (L.) Seem. (Bignoniaceae). Plant Syst Evol 300:303–320

    Article  Google Scholar 

  • Tütüncü Konyar S (2016) Occurrence of polytene chromosomes in the bicellular and mature pollen grains of endangered plant species Pancratium maritimum L. (Amaryllidaceae). Bot Lett 163(2):181–190. doi:10.1080/23818107.2016.1156572

    Article  Google Scholar 

  • Tütüncü Konyar S, Dane F (2013) Cytochemistry of pollen development in Campsis radicans (L.) Seem. (Bignoniaceae). Plant Syst Evol 299(1):87–95

    Article  Google Scholar 

  • Tütüncü Konyar S, Dane F, Tütüncü S (2013) Distribution of insoluble polysaccharides, neutral lipids and proteins in the developing anthers of Campsis radicans (L.)Seem. (Bignoniaceae). Plant Syst Evol 299(4):743–760

    Article  Google Scholar 

  • Wardhana H (2015) Mikrosporogenesis pada Crinum asiaticum L. dan Hymenocallis littoralis (Jacq.) Salisb. (Amaryllidaceae): Studi Anatomi dan Ultrastruktural. Master’s thesis, UGM.

  • Willemse MTM, Reznickova SA (1980) The formation of pollen in the anther of Lilium. I. Development of the pollen wall. Acta Bot. Neerl. 29 (thiss issue): 127 -140.

  • Willis JC (1988) A dictionary of the flowering plants & ferns, 8th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Zini LM, Galati GB, Solís SM, Ferrucci MS (2012) Anther structure and pollen development in Melicoccus lepidopetalus (Sapindaceae): an evolutionary approach to dioecy in the family. Flora 207(10):712–720

    Article  Google Scholar 

Download references

Acknowledgments

The author is deeply grateful to Drs. Serpil Tütüncü and Ercüment Konyar for their help during collection and fixation of the material. TEM studies and sectioning of the semi-thin sections were performed in the Plant, Drug and Scientific Researches Center of Anadolu University (AUBIBAM). The author thanks the manager of the Scientific Researches Center, Professor Lütfi Genç, and the assistant manager, Professor Deniz Hür, for their kind help during the execution of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sevil Tütüncü Konyar.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Handling Editor: Anne-Catherine Schmit

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tütüncü Konyar, S. Ultrastructural aspects of pollen ontogeny in an endangered plant species, Pancratium maritimum L. (Amaryllidaceae). Protoplasma 254, 881–900 (2017). https://doi.org/10.1007/s00709-016-0998-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-016-0998-3

Keywords

Navigation