Skip to main content
Log in

Pollen ontogeny in Magnolia liliflora Desr.

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Pollen ontogeny contributes significantly to the evolutionary analysis and the understanding of the reproductive biology of seed plants. Although much research on basal angiosperms is being carried out there are still many important features about which little is known in these taxa, such as the sporophytic structures related to pollen development and morphology. In this study, pollen development of Magnolia liliflora was analyzed by optical microscopy and transmission electron microscopy. The aim of this paper was to supply data that will help characterize basal angiosperms. Microsporogenesis is of the successive type, so that tetrads are decussate or isobilateral. The callosic walls form by the centripetal growth of furrows. The secretory tapetum develops orbicules, which start to form in the microspore tetrad stage. Pollen grains are shed at the bicellular stage. The exine wall has a granular infratectum. Ultrastructural changes observed in the cytoplasm of microspores and tapetal cells are related to the development of the pollen grain wall and orbicules. Centrifugal cell plates are more usual for the successive type of microsporogenesis. The presence of the successive type of microsporogenesis with callosic walls formed by the centripetal growth of furrows could reflect the fact that the successive type in Magnoliaceae is derived from the simultaneous type. The granular infratectum of the ectexine and the presence of orbicules could indicate that this species is one of the most evolved of the genus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Azuma H, Thien LB, Kawano S (1999) Molecular phylogeny of Magnolia (Magnoliaceae) inferred from cpDNA sequences and evolutionary divergence of the floral scents. J Plant Res 112:291–306

    Article  CAS  Google Scholar 

  • Cronquist A (1981) An integrated system of classification of flowering plants. Columbia University Press, New York, p 1262

    Google Scholar 

  • Cronquist A (1988) The evolution and classification of flowering plants, 2nd edn. The New York Botanical Garden, New York

    Google Scholar 

  • Dinis AM, Mesquita JF (1993) The F-actin distribution during microsporogenesis in Magnolia soulangeana Soul. (Magnoliaceae). Sex Plant Reprod 5:468–470

    Google Scholar 

  • Doyle JA (1977) Patterns of evolution in early angiosperms. In: Hallam A (ed) Patterns of evolution. Elsevier, Amsterdam, pp 501–546

    Google Scholar 

  • Doyle JA (2009) Evolutionary significance of granular exine structure in the light of phylogenetic analyses. Rev Palaeobot Palynol 156:198–210

    Article  Google Scholar 

  • Doyle JA, Van Campo M, Lugardon B (1975) Observations on exine structure of Eucommiidites and Lower Cretaceous angiosperm pollen. Pollen et Spores 17:429–486

    Google Scholar 

  • El-Ghazaly G, Huysmans S (2001) Re-evaluation of a neglected layer in pollen wall development with comments on its evolution. Grana 40:3–16

    Article  Google Scholar 

  • Erdtman G (1960) The acetolysis method: a revised description. Svensk Bot Tidskr 54:561–564

    Google Scholar 

  • Furness CA (2008) Successive microsporogenesis in eudicots, with particular reference to Berberidaceae (Ranunculales). Plant Syst Evol 273:211–223

    Article  Google Scholar 

  • Furness CA, Rudall PJ (2001) The tapetum in basal angiosperms: early diversity. Int J Plant Sci 162:375–392

    Article  Google Scholar 

  • Gabarayeva NI (1986) The development of the exine in Michelia fuscata (Magnoliaceae) in connection with the changes in cytoplasmic organelles of microspores and tapetum. Bot Zh S S S R 71:311–322 (in Russian)

    Google Scholar 

  • Gabarayeva NI (1991) The ultrastructure and development of exine and orbicules of Magnolia delavayi (Magnoliaceae) in the tetrad and the beginning of posttetrad periods. Bot Zh S S S R 76:10–19 (in Russian)

    Google Scholar 

  • Gabarayeva NI (1992) Sporoderm development in Asimina triloba (Annonaceae). I. The developmental events before callose dissolution. Grana 31:213–222

    Article  Google Scholar 

  • Gabarayeva NI (1993) Sporoderm development in Asimina triloba (Annonaceae). II. The developmental events after callose dissolution. Grana 32:210–220

    Article  Google Scholar 

  • Gabarayeva NI (1995) Pollen wall and tapetum development in Anaxagorea brevipes (Annonaceae): Sporoderm substructure, cytoskeleton, sporopollenin precursor particles, and the endexine problem. Rev Palaeobot Palynol 85:123–152

    Article  Google Scholar 

  • Gabarayeva NI, El-Ghazaly G (1997) Sporoderm development in Nymphaea mexicana (Nymphaeaceae). Plant Syst Evol 204:1–19

    Article  Google Scholar 

  • Galati BG (1985) Estudios embriológicos en Cabomba australis (Nymphaeaceae).I. La esporogénesis y las generaciones sexuadas. Bol Soc Argent Bot 24:29–47

    Google Scholar 

  • Galati BG (2003) Ubisch bodies in angiosperms. In: Pandey AK, Dhakal MR (eds) Advances in plant reproductive biology, vol II. Narendra, Delhi, pp 1–21

    Google Scholar 

  • Galati BG, Monacci F, Gotelli M, Rosenfeldt S (2007) Pollen, tapetum and orbicule development in Modiolastrum malvifolium (Malvaceae). Ann Bot 99:755–763

    Article  PubMed  Google Scholar 

  • Galati BG, Gotelli MM, Rosenfeldt S, Torretta JP, Zarlavsky G (2010) Orbicules in relation to the pollination modes. In: Kaiser BJ (ed) Pollen: structure, types and effects. Nova Science, New York, pp 1–15

    Google Scholar 

  • González F, Rudall PJ, Furness CA (2001) Microsporogenesis and systematics of Aristolochiaceae. Bot J Linn Soc 137:221–242

    Article  Google Scholar 

  • Heslop-Harrison J (1968a) Pollen wall development. Science 161:230–237

    Article  PubMed  CAS  Google Scholar 

  • Heslop-Harrison J (1968b) Tapetal origin of pollen-coat substances in Lilium. New Phytol 67:779–786

    Article  CAS  Google Scholar 

  • Hesse M (2001) Pollen characters of Amborella trichopoda (Amborellaceae). A reinvestigation. Int J Plant Sci 162:201–208

    Article  Google Scholar 

  • Huysmans S, El-Ghazaly G, Smets E (1998) Orbicules in Angiosperms: morphology, function, distribution, and relation with tapetum type. Bot Rev 64:240–272

    Article  Google Scholar 

  • Kapil RN, Bhandari NN (1964) Morphology and embryology of Magnolia Dill. Ex Linn. Proc Natl Inst Sci India B 30:245–262

    Google Scholar 

  • Kong H (1999) Study on pollen morphology of 3 species of Magnolia. Xibei Zhiwu Xuebao 19:206–208

    Google Scholar 

  • Le Thomas A (1980) Ultrastructural characters of the pollen grains of African Annonaceae and their significance for the phylogeny of primitive angiosperms (first part). Pollen Spores 22:267–342

    Google Scholar 

  • Le Thomas A (1981) Ultrastructural characters of the pollen grains of African Annonaceae and their significance for the phylogeny of primitive angiosperms (second part). Pollen Spores 23:5–36

    Google Scholar 

  • Lugardon B, Le Thomas A (1974) Sur la structure feuilletée de la couche basale de l’ectexine de diverses Annonacées. C R Acad Sci D 279:255–258

    Google Scholar 

  • Maheshwari P (1950) An introduction to the embryology of angiosperms. McGraw-Hill, New York

    Google Scholar 

  • O’Brien TP, McCully ME (1981) The study of plant structure: principles and selected methods. Termarcarphi, Melbourne

    Google Scholar 

  • Pacini E, Franchi GG (1993) Role of the tapetum in pollen and spore dispersal. Plant Syst Evol (Suppl) 7:1–11

    Article  Google Scholar 

  • Raghavan V (1997) Molecular embryology of flowering plants. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Remizowa M, Sokoloff DD, Macfarlane TD, Yadav SR, Prychid CJ, Rudall PJ (2008) Comparative pollen morphology in the early-divergent angiosperm family Hydatellaceae reveals variation at the infraspecific level. Grana 47:81–100

    Article  Google Scholar 

  • Rowley JR, Gabarayeva NI, Walles B (1992) Cyclic invasion of tapetal cells into loculi during microspore development in Nymphaea colorata (Nymphaceae). Am J Bot 79:801–808

    Article  Google Scholar 

  • Ru-Wen F, Zeng-Fang Y (1995) Ultrastructure and development of the tapetum in Liriodendron chinense (Hemsl.) Sarg. Chin J Bot 7:133–138

    Google Scholar 

  • Takhtajan A (1991) Evolutionary trends in flowering plants. Columbia University Press, New York

    Google Scholar 

  • Taylor ML, Gutman BL, Melrose NA, Ingraham AM, Schwartz JA, Osborn JM (2008) Pollen and anther ontogeny in Cabomba caroliniana (Cabombaceae, Nymphaeales). Am J Bot 95:399–413

    Article  PubMed  Google Scholar 

  • Walker JW (1976) Evolutionary significance of the exine in the pollen of primitive angiosperms. In: Fergurson IK, Muller J (eds) The evolutionary significance of the exine. Academic, London, pp 251–308

    Google Scholar 

  • Wang LL, Hu JQ, Pang JL, Xiang TH (2005) Studies on the megasporogenesis and microsporogenesis and the development of their female and male gametophyte in Magnolia biloba. Shi Yan Sheng Wu Xue Bao 38:490–500

    PubMed  Google Scholar 

  • Xu F-X, Kirchoff BK (2008) Pollen morphology and ultrastructure of selected species of Magnoliaceae. Rev Palaeobot Palynol 150:140–153

    Article  Google Scholar 

  • Xu F-X, Xu X-L, Hu X-Y (2004) Pollen morphology of five species from Magnolia. Acta Bot Yunnan 26:83–88

    Google Scholar 

  • Zavada MS (1984) Pollen wall development of Austrobaileya maculata. Bot Gaz 145:11–21

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. G. Galati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galati, B.G., Zarlavsky, G., Rosenfeldt, S. et al. Pollen ontogeny in Magnolia liliflora Desr.. Plant Syst Evol 298, 527–534 (2012). https://doi.org/10.1007/s00606-011-0563-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-011-0563-7

Keywords

Navigation