Skip to main content
Log in

Pollen and microsporangium development in Hovenia dulcis (Rhamnaceae): a different type of tapetal cell ultrastructure

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Despite that there is some literature on pollen morphology of Rhamnaceae, studies addressing general aspects of the microsporogenesis, microgametogenesis, and anther development are rare. The aim of this paper is to describe the ultrastructure of pollen grain ontogeny with special attention to tapetum cytology in Hovenia dulcis. Anthers at different stages of development were processed for transmission and scanning electron microscopy, bright-field microscopy, and fluorescence microscopy. Different histochemical reactions were carried out. The ultrastructural changes observed during the development of the tapetal cells and pollen grains are described. Large vesicles containing carbohydrates occur in the tapetal cell cytoplasm during the early stages of pollen development. Its origin and composition are described and discussed. This is the first report on the ontogeny and ultrastructure of the pollen grain and related sporophytic structures of H. dulcis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bieleski RL, Redgwell RJ (1980) Sorbitol metabolism in nectaries from flowers of Roseaceae. Aust J Plant Physiol 7:15–25

    Article  CAS  Google Scholar 

  • Cho JY, Moon JH, Eun JB, Chung SJ, Park KH (2004) Isolation and characterization of 3(Z)-dodecenedioic acid as an antibacterial substance from Hovenia dulcis THUNB. Food Sci Biotechnol 13:46–50

    CAS  Google Scholar 

  • Driouich A, Faye L, Staehelin LA (1993) The plant Golgi apparatus: a factory for complex polysaccharides and glycoproteins. Trends Biochem Sci 18:210–214

    Article  CAS  PubMed  Google Scholar 

  • Driouich A, Cannesan MA, Dardelle F et al (2012) Unity is strength: the power of border cells and border like cells in relation with plant defense. In: Vivanco JM, Baluska F (eds) Secretions and exudates in biological systems. Springer, Heidelberg, pp 91–108

    Chapter  Google Scholar 

  • Galati BG (2003) Ubisch bodies in Angiosperms. In: Pandey K, Dhakal MR (eds) Advances in plant reproductive biology, vol II. Narendra Publishing House, Delhi, pp 1–20

    Google Scholar 

  • Galati BG, Gotelli MM, Rosenfeldt S, Torretta JP, Zarlavsky G (2010) Orbicules in relation to the pollination modes. In: Kaiser BJ (ed) Pollen: structure, types and effects. Nova, New York, pp 1–15

    Google Scholar 

  • Gotelli M, Galati B, Medan D (2012) Pollen, Tapetum, and Orbicule Development in Colletia paradoxa and Discaria americana (Rhamnaceae). ScientificWorldJournal: Article ID 948469. doi:10.1100/2012/948469

  • Hernández-Pinzón I, Ross JHE, Barnes KA, Damant AP, Murphy DJ (1999) Composition and role of tapetal lipid bodies in the biogenesis of the pollen coat of Brassica napus. Planta 208:588–598

    Article  PubMed  Google Scholar 

  • Hsieh K, Huang AHC (2005) Lipid-rich tapetosomes in Brassica tapetum are composed of oleosin-coated oil droplets and vesicles, both assembled in and then detached from the endoplasmic reticulum. Plant J 43:889–899

    Article  CAS  PubMed  Google Scholar 

  • Hsieh K, Huang AHC (2007) Tapetosomes in Brassica tapetum accumulate endoplasmic reticulum-derived flavonoids and alkanes for delivery to the pollen surface. Plant Cell 19:582–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huysmans S, El-Ghazaly G, Smets E (1998) Orbicules in Angiosperms: morphology, function, distribution, and relation with tapetum types. Bot Rev 64:240–272

    Article  Google Scholar 

  • Jensen WA (1962) Botanical Hystochemistry. Freeman, San Francisco

    Google Scholar 

  • Johri BM, Ambegaokar KB, Srivastava PS (1992) Comparative embryology of angiosperms, vol 1–2. Springer, Berlin

    Book  Google Scholar 

  • Lerouxel O, Cavalier DM, Liepman AH, Keegstra K (2006) Biosynthesis of plant cell wall polysaccharides—a complex process. Curr Opin Plant Biol 9:621–630

    Article  CAS  PubMed  Google Scholar 

  • Maheshwari P (1950) An introduction to the embryology of angiosperms. McGraw-Hill, New York

    Book  Google Scholar 

  • McCue AD, Cresti M, Feijo JA, Slotkin RK (2011) Cytoplasmic connection of sperm cells to the pollen vegetative cell nucleus: potential roles of the male germ unit revisited. J Exp Bot 62:1621–1631

    Article  CAS  PubMed  Google Scholar 

  • Medan D, Schirarend C (2004) Rhamnaceae. In: Kubitzki K (ed) The families and genera of vascular plants VI. Flowering plants – dicotyledons: Celastrales, Oxalidales, Rosales, Cornales, Ericales. Springer Verlag, Heidelberg

    Google Scholar 

  • Mollenhauer HH, Morré DJ (1966) Tubular connections between dictyosomes and forming secretory vesicles in plant Golgi apparatus. J Cell Biol 29:373–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy DJ, Ross JHE (1998) Biosynthesis, targeting and processing of oleosin-like proteins, which are major pollen coat components in Brassica napus. Plant J 12:1–16

    Google Scholar 

  • Okuma Y, Ishikawa H, Ito Y, Hayashi Y, Endo A, Watanabe T (1995) Effects of extracts from Hovenia dulcis Thunb. on alcohol concentration in rats and men administered alcohol. J Jpn Soc Food Sci Technol 48:167–172

    Article  CAS  Google Scholar 

  • Papagiannes E (1974) Pollen studies of selected genera of Rhamnaceae, Master Thesis. University of Illinois at the Chicago Circle, Chicago, Illinois

    Google Scholar 

  • Pearse AGE (1961) Histochemistry, theoretical and applied, 2nd edn. Little Brown, Boston

    Google Scholar 

  • Perveen A, Qaiser M (2005) Pollen Flora of Pakistan –XLIV. Rhamnaceae. Pakistan J Bot 37:195–202

    Google Scholar 

  • Radice S, Galati BG (2003) Floral nectary ultrastructure of Prunus persica (L.) Batch cv. Forastero (Newcomer), an Argentine peach. Plant Syst Evol 238:23–32

    Article  Google Scholar 

  • Raghavan V (1997) Molecular embryology of flowering plants. Cambridge University Press, UK, pp 357–393

    Book  Google Scholar 

  • Ross JHE, Murphy DJ (1996) Characterization of antherexpressed genes encoding a major class of extracellular oleosinlike proteins in the pollen coat of Brassicaceae. Plant J 9:625–637

    Article  CAS  PubMed  Google Scholar 

  • Ruiter RK, van Eldik GJ, van Herpen RMA, Schrauwen JAM (1997) Characterization of oleosins in the pollen coat of Brassica oleracea. Plant Cell 9:1621–1631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schirarend C (1996) Pollen morphology of the genus Paliurus (Rhamnaceae). Grana 35:347–356

    Article  Google Scholar 

  • Schirarend C, Köhler E (1993) Rhamnaceae Juss. World Pollen and Spore Flora 17(18):1–53

    Google Scholar 

  • Stpiczynska M (2002) Nectar resorption in the spur of Platanthera chloranta Custer (Rchb.) Orchidaceae. Nectar and Nectary: from biology to biotechnology. Montalcino, Siena, pp 28–31

    Google Scholar 

  • Suzuki T, Tsunekawa S, Koizuka C et al (2013) Development and disintegration of tapetum-specific lipid-accumulating organelles, elaioplasts and tapetosomes, in Arabidopsis thaliana and Brassica napus. Plant Sci 207:25–36

    Article  CAS  PubMed  Google Scholar 

  • Ubisch G (1927) Kurze mitteilungen zur entwicklungsgeschiehte der antheren. Planta 3:490–495

    Article  Google Scholar 

  • Wu SSH, Platt KA, Ratnayake C, Wang TW, Ting JTL, Huang AHC (1997) Isolation and characterization of novel neutrallipid- containing organelles and globuli-filled plastids from Brassicanapus tapetum. Proc Natl Acad Sci U S A 94:12711–12716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang J, Zhu W, Han J, Li Z, Ge H, Lin D (2012) Analysis of organic acids in Chinese raisin tree (Hovenia dulcis) peduncle and their changes in liquid fermentation process. Food Sci Biotechnol 21:1119–1127

    Article  CAS  Google Scholar 

  • Yu HS, Hu SY, Zhu C (1989) Ultrastructure of sperm cells and the male germ unit in pollen tubes of Nicotiana tabacum. Protoplasma 152:29–36

    Article  Google Scholar 

  • Yun CW, Lee BC (2002) Vegetation structure of Hovenia dulcis community in South Korea. Korean J Ecol 25:93–99

    Article  Google Scholar 

  • Zarlavsky GE (2014) Histología Vegetal: Técnicas Simples y Complejas. Sociedad Argentina de Botánica, Buenos Aires

    Google Scholar 

Download references

Funding

This research was financially supported by a grant (UBACyT 2013–2016 GC 20020120100056BA) to B. Galati. M. Gotelli and D. Medan are affiliated with CONICET, Argentina.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina M. Gotelli.

Additional information

Handling Editor: Alexander Schulz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gotelli, M.M., Galati, B.G., Zarlavsky, G. et al. Pollen and microsporangium development in Hovenia dulcis (Rhamnaceae): a different type of tapetal cell ultrastructure. Protoplasma 253, 1125–1133 (2016). https://doi.org/10.1007/s00709-015-0870-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-015-0870-x

Keywords

Navigation