Skip to main content
Log in

Salt-stress-responsive chloroplast proteins in Brassica juncea genotypes with contrasting salt tolerance and their quantitative PCR analysis

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Brassica juncea is mainly cultivated in the arid and semi-arid regions of India where its production is significantly affected by soil salinity. Adequate knowledge of the mechanisms underlying the salt tolerance at sub-cellular levels must aid in developing the salt-tolerant plants. A proper functioning of chloroplasts under salinity conditions is highly desirable to maintain crop productivity. The adaptive molecular mechanisms offered by plants at the chloroplast level to cope with salinity stress must be a prime target in developing the salt-tolerant plants. In the present study, we have analyzed differential expression of chloroplast proteins in two Brassica juncea genotypes, Pusa Agrani (salt-sensitive) and CS-54 (salt-tolerant), under the effect of sodium chloride. The chloroplast proteins were isolated and resolved using 2DE, which facilitated identification and quantification of 12 proteins that differed in expression in the salt-tolerant and salt-sensitive genotypes. The identified proteins were related to a variety of chloroplast-associated molecular processes, including oxygen-evolving process, PS I and PS II functioning, Calvin cycle and redox homeostasis. Expression analysis of genes encoding differentially expressed proteins through real time PCR supported our findings with proteomic analysis. The study indicates that modulating the expression of chloroplast proteins associated with stabilization of photosystems and oxidative defence plays imperative roles in adaptation to salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abreu CEB, Araujo GDS, Monteiro-Moreira ACO, Costa JH, Leite HB, Moreno MB, Prisco JT, Gomes-Filho E (2014) Proteomic analysis of salt stress and recovery in leaves of Vigna unguiculata cultivars differing in salt tolerance. Plant Cell Rep 33:1289–1306

    Article  PubMed  Google Scholar 

  • Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahmad A, Khan NA, Iqbal M, Prasad MNV (2012) Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids—a review. Environ Exp Bot 75:307–324

    CAS  Google Scholar 

  • Arshi A, Ahmad A, Aref IM, Iqbal M (2010a) Calcium interaction with salinity induced effects on growth and metabolism of soybean (Glycine max L.) cultivars. J Environ Biol 31:795–801

    CAS  Google Scholar 

  • Arshi A, Ahmad A, Aref IM, Iqbal M (2010b) Effect of calcium against salinity-induced inhibition in growth, ion accumulation and proline contents in Cichorium intybus L. J Environ Biol 31:939–944

    CAS  PubMed  Google Scholar 

  • Arshi A, Ahmad A, Aref IM, Iqbal M (2012) Comparative studies on antioxidant enzyme action and ion accumulation in soybean cultivars under salinity stress. J Environ Biol 33:9–20

    CAS  PubMed  Google Scholar 

  • Ashley KS, Boddu J, Wang D, James B, Swaminathan K, Moose SP, Long SP (2014) Transcriptional responses indicate maintenance of photosynthetic proteins as key to the exceptional chilling tolerance of C4 photosynthesis in Miscanthus giganteus. J Exp Bot 65:3737–3747

    Article  Google Scholar 

  • Bagheri R, Bashir H, Ahmad J, Iqbal M, Qureshi MI (2015) Spinach (Spinacia oleracea L.) modulates its proteome differentially in response to salinity, cadmium and their combination stress. Plant Physiol Biochem 97:235–245

    Article  CAS  PubMed  Google Scholar 

  • Bandehagh A, Salekdeh GH, Toorchi M, Mohammadi A, Komatsu S (2011) Comparative proteomic analysis of canola leaves under salinity stress. Proteomics 11:1965–1975

    Article  CAS  PubMed  Google Scholar 

  • Bashir H, Qureshi MI, Ibrahim AM, Iqbal M (2015) Chloroplast and photosystems: impact of cadmium and iron deficiency. Photosynthetica 53(3):321–335. doi:10.1007/s11099-015-0152-z

    Article  CAS  Google Scholar 

  • Boex-Fontvieille E, Daventure M, Jossier M, Hodges M, Zivy M, Tcherkez G (2014) Phosphorylation pattern of Rubisco activase in Arabidopsis leaves. Plant Biol 16:550–557

    Article  CAS  PubMed  Google Scholar 

  • Capriotti AL, Borrelli GM, Colapicchioni V, Papa R, Piovesana S, Samperi R, Stampachiacchiere S, Lagana A (2014) Proteomic study of a tolerant genotype of durum wheat under salt-stress conditions. Anal Bioanal Chem 406:1423–1435

    Article  CAS  PubMed  Google Scholar 

  • Ceppi MG, Oukarroum A, Cicek N, Strasser RJ, Schansker G (2012) The IP amplitude of the fluorescence rise OJIP is sensitive to changes in the photosystem I content of leaves: a study on plants exposed to magnesium and sulfate deficiencies, drought stress and salt stress. Physiol Plant 144:277–288

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  PubMed  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  • Delfine S, Alvino A, Zacchini M, Loreto F (1998) Consequences of salt stress on conductance to CO2 diffusion, rubisco characteristics and anatomy of spinach leaves. Aust J Plant Physiol 25:395–402

    Article  CAS  Google Scholar 

  • Evers D, Legay S, Lamoureux D, Hausman JF, Hoffmann L, Renaut J (2012) Towards a synthetic view of potato cold and salt stress response by transcriptomic and proteomic analyses. Plant Mol Biol 78:503–514

    Article  CAS  PubMed  Google Scholar 

  • Fan PX, Feng JJ, Jiang P, Chen XY, Bao H, Nie LL, Jiang D, LvL SL, Kuang TY, Li YX (2011) Coordination of carbon fixation and nitrogen metabolism in Salicornia europaea under salinity: comparative proteomic analysis on chloroplast proteins. Proteomics 11:4346–4367

    Article  CAS  PubMed  Google Scholar 

  • Feng L, Han Y, Liu G, An B, Yang J, Yang G, Li Y (2007) Overexpression of sedoheptulose-1,7-bisphosphatase enhances photosynthesis and growth under salt stress in transgenic rice plants. Funct Plant Biol 34:822–834

    Article  CAS  Google Scholar 

  • Galmes J, Aranjuelom I, Medrano H, Flexas J (2013) Variation in Rubisco content and activity under variable climatic factors. Photosynth Res 117:73–90

    Article  CAS  PubMed  Google Scholar 

  • Ghabooli M, Khatabi B, Ahmadi FS, Sepehri M, Mirzaei M, Amirkhani A, Jorrín-Novo JV, Salekdeh GH (2013) Proteomics study reveals the molecular mechanisms underlying water stress tolerance induced by Piriformospora indica in barley. J Proteome 4:289–301

    Article  Google Scholar 

  • Ghaffari A, Gharechahi J, Nakhoda B, Salekdeh GH (2014) Physiology and proteome responses of two contrasting rice mutants and their wild type parent under salt stress conditions at the vegetative stage. J Plant Physiol 171:31–44

    Article  CAS  PubMed  Google Scholar 

  • Haa CV, Leyva-Gonzálezc MA, Osakabed Y, Trana UT, Nishiyamaa R, Watanabea Y, Tanakae M, Sekie M, Yamaguchif S, Dongb NV, Yamaguchi-Shinozakig K, Shinozakid K, Herrera-Estrellac L, Trana LP (2014) Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc Natl Acad Sci U S A 111:851–856

    Article  Google Scholar 

  • Haldrup A, Simpson DJ, Scheller HV (2000) Down-regulation of the PSI-F subunit of photosystem I (PSI) in Arabidopsis thaliana, the PSI-F subunit is essential for photoautotrophic growth and contributes to antenna function. J Biol Chem 275:31211–31218

    Article  CAS  PubMed  Google Scholar 

  • He Y, Yu C, Zhou L, Chen Y, Liu A, Jin J, Hong J, Qi Y, Jiang D (2014) Rubisco decrease is involved in chloroplast protrusion and Rubisco-containing body formation in soybean (Glycine max.) under salt stress. Plant Physiol Biochem 74:118–124

    Article  CAS  PubMed  Google Scholar 

  • Hoffer PH, Christopher DA (1997) Structure and blue light-responsive transcription of a chloroplast psbD promoter from Arabidopsis thaliana. Plant Physiol 115:213–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurkman WJ, Tanaka CK (1986) Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol 81:802–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javid M, Ford R, Nicolas ME (2012) Tolerance responses of Brassica juncea to salinity, alkalinity and alkaline salinity. Funct Plant Biol 39:699–707

    Article  CAS  Google Scholar 

  • Kamal AHM, Cho K, Kim DE, Uozumi N, Chung KU, Lee SY, Choi JS, Cho SW, Shin CS, Woo SH (2012) Changes in physiology and protein abundance in salt-stressed wheat chloroplasts. Mol Biol Rep 39:9059–9074

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Rakwal R, Agrawal GK, Jung Y, Shibato J, Jwa N, Iwahashi Y, Iwahashi H, Kim DH, Shim I, Usui K (2005) A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis 26:4521–4539

    Article  CAS  PubMed  Google Scholar 

  • Kosova K, Vitamvas P, Prasil IT, Renaut J (2011) Plant proteome changes under abiotic stress—contribution of proteomics studies to understanding plant stress response. J Proteome 74:1301–1322

    Article  CAS  Google Scholar 

  • Kruger TPJ, Ilioaia C, Johnson MP, Ruban AV, Grondelle RV (2014) Disentangling the low-energy states of the major light-harvesting complex of plants and their role in photoprotection. Biochim Biophys Acta 183:1027–1038

    Article  Google Scholar 

  • Lee SY, Damodaran PN, Roh KS (2014) Influence of salicylic acid on rubisco and rubisco activase in tobacco plant grown under sodium chloride in vitro. Saudi J Biol Sci 21:417–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leterrier M, Barroso JB, Valderrama R, Palma JM, Corpas FJ (2012) NADP-dependent isocitrate dehydrogenase from Arabidopsis roots contributes in the mechanism of defence against the nitro-oxidative stress induced by salinity. Sci World J 2012:6947–7040

    Article  Google Scholar 

  • Li W, Zhang C, Lu Q, Wen X, Lu C (2011) The combined effect of salt stress and heat shock on proteome profiling in Suaeda salsa. J Plant Physiol 168:1743–1752

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Liu J, Tan D, Allan AC, Jiang Y, Xu X, Han Z, Kong J (2013) A genome-wide expression profile of salt-responsive genes in the apple rootstock Malus zumi. Int J Mol Sci 14:21053–21070

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao J, Zhou H, Zhang H, Zhong P, Huang Y (2013) Comparative proteomic analysis of differentially expressed proteins in the early milky stage of rice grains during high temperature stress. J Exp Bot 62:655–671

    Google Scholar 

  • Liu G, Ma L, Duan W, Wang B, Li J, Xu H, Yan X, Yan B, Li S, Wang L (2014) Differential proteomic analysis of grapevine leaves by iTRAQ reveals responses to heat stress and subsequent recovery. BMC Plant Biol 14:110. doi:10.1186/1471-2229-14-110

    Article  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lundin B, Hansson M, Schoefs B, Vener AV, Spetea C (2007) The Arabidopsis PsbO2 protein regulates dephosphorylation and turnover of the photosystem II reaction centre D1 protein. Plant J 49:528–539

    Article  CAS  PubMed  Google Scholar 

  • Mahler H, Wuennenberg P, Linder M, Przybyla D, Zoerb C, Landgraf F, Forreiter C (2007) Singlet oxygen affects the activity of the thylakoid ATP synthase and has a strong impact on its gamma subunit. Planta 225:1073–1083

    Article  CAS  PubMed  Google Scholar 

  • Mittal S, Kumari N, Sharma V (2012) Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant Physiol Biochem 54:17–26

    Article  CAS  PubMed  Google Scholar 

  • Miyake C, Shinzaki Y, Nishioka M, Horiguchi S, Tomizawa KI (2006) Photoinactivation of ascorbate peroxidase in isolated tobacco chloroplasts: Galdieria partita APX maintains the electron flux through the water-water cycle in transplastomic tobacco plants. Plant Cell Physiol 47:200–210

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanism of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. BBA Bioenergetics 1767:414–421

    Article  CAS  PubMed  Google Scholar 

  • Nelson N, Yocum CF (2006) Structure and function of photosystem I and II. Annu Rev Plant Biol 57:521–565

    Article  CAS  PubMed  Google Scholar 

  • O’Farrel PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    Google Scholar 

  • Ozakca DU (2013) Effect of abiotic stress on photosystem I-related gene transcription in photosynthetic organisms. In: Dubinsky Z (ed) Photosynthesis. InTech, Croatia, pp 161–184

    Google Scholar 

  • Parker R, Flowers TJ, Moore AL, Harpham NVJ (2006) An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. J Exp Bot 57:1109–1118

    Article  CAS  PubMed  Google Scholar 

  • Qiao G, Zhang X, Jiang J, Liu M, Han X, Yang H, Zhuo R (2014) Comparative proteomic analysis of responses to salt stress in Chinese willow (Salix matsudana Koidz). Plant Mol Biol Report 32:814–827

    Article  CAS  Google Scholar 

  • Qureshi MI, Abdin MZ, Ahmad J, Iqbal M (2013) Effect of long-term salinity on cellular antioxidants, compatible solute and fatty acid profile of sweet annie (Artemisia annua L.). Phytochemistry 95:215–223

    Article  CAS  PubMed  Google Scholar 

  • Ross D, Kepa JK, Winski SL, Beall HD, Anwar A, Siegel D (2000) NAD(P)H: quinone oxidoreductase 1 (NQO1): chemoprotection, bioactivation, gene regulation and genetic polymorphisms. Chem Biol Interact 129:77–97

    Article  CAS  PubMed  Google Scholar 

  • Ru QM, Xiao Q, Lin P, Pei ZM, Zheng HL (2009) Short- and long-term effects of NaCl on physiological and biochemical characteristics in leaves of a true mangrove Kandelia candel. Russ J Plant Physiol 56:363–369

    Article  CAS  Google Scholar 

  • Shah SH (2007) Effects of salt stress on mustard as affected by gibberellic acid application. Gen Appl Plant Physiol 33:97–106

    CAS  Google Scholar 

  • Siddiqui MH, Mohammad F, Khan MMA, Al-Whaibi MH (2012) Cumulative effect of nitrogen and sulphur on Brassica juncea L. genotypes under NaCl stress. Protoplasma 249:139–153

    Article  CAS  PubMed  Google Scholar 

  • Siegel D, Gustafson DL, Dehn DL, Han JY, Boonchoong P, Berliner LJ (2004) NAD(P)H: quinone oxidoreductase 1: role as a superoxide scavenger. Mol Pharmacol 65:1238–1247

    Article  CAS  PubMed  Google Scholar 

  • Singh MP, Singh DK, Rai M (2007) Assessment of growth, physiological and biochemical parameters and activities of antioxidative enzymes in salinity tolerant and sensitive basmati rice varieties. J Agron Crop Sci 193:398–412

    Article  CAS  Google Scholar 

  • Srivastava AK, Srivastava S, Lokhande VH, D’Souza SF, Suprasanna P (2015) Salt stress reveals differential antioxidant and energetics responses in glycophyte (Brassica juncea L.) and halophyte (Sesuvium portulacastrum L.). Front Environ Sci 3:19

    Article  Google Scholar 

  • Stefanic PP, Tal K, Guy A, Dudy B (2013) Chloroplasts of salt-grown Arabidopsis seedlings are impaired in structure, genome copy number and transcript levels. PLoS One 8, e82548

    Article  Google Scholar 

  • Suorsa M, Sirpio S, Allahverdiyeva Y, Paakkarinen V, Mamedov F, Styring S, Aro EM (2006) PsbR, a missing link in the assembly of the oxygen-evolving complex of plant photosystem II. J Biol Chem 281:145–150

    Article  CAS  PubMed  Google Scholar 

  • Tondo ML, Hurtado-Guerrero R, Ceccarelli EA, Medina M, Orellano EG, Martinez-Julvez M (2013) Crystal structure of the FAD-containing ferredoxin-NADP+ reductase from the plant pathogen Xanthomonas axonopodis pv. citri. BioMed Res Int 2013 Art. ID 906572, 6. doi:10.1155/2013/906572

  • Turano FJ, Thakkar SS, Fang T, Weisemann JM (1997) Characterization and expression of NAD(H)-dependent glutamate dehydrogenase genes in Arabidopsis. Plant Physiol 113:1329–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang RG, Chen SL, Deng L, Fritz E, Hüttermann A, Polle A (2007) Leaf photosynthesis, fluorescence response to salinity and the relevance to chloroplast salt compartmentation and anti-oxidative stress in two poplars. Trees 21:581–591

    Article  CAS  Google Scholar 

  • Wang L, Wenyu L, Jianhong X, Fanglin T, Yiyong C, Li H, Chi-Lien C, Wei C (2013) Dynamics of chloroplast proteome in salt-stressed mangrove Kandelia candel (L.) Druce. J Proteome Res 12:5124–5136

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Liu X, Liang M, Tan F, Liang W, Chen Y, Lin Y, Huang L, Xing J, Chen W (2014) Proteomic analysis of salt-responsive proteins in the leaves of mangrove Kandelia candel during short-term stress. PLoS One 9, e83141

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilk L, Grunwald M, Liao PN, Wallab PJ, Kuhlbrandt W (2013) Direct interaction of the major light-harvesting complex II and PsbS in nonphotochemical quenching. Proc Natl Acad Sci U S A 110:5452–5456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu D, Shen Q, Qiu L, Han Y, Ye L, Jabeen Z, Shu Q, Zhang G (2014) Identification of proteins associated with ion homeostasis and salt tolerance in barley. Proteome 14:1381–1392

    Article  CAS  Google Scholar 

  • Yan SP, Zhang QY, Tang ZC, Su WA, Sun WN (2006) Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cell Proteomics 5:484–496

    Article  CAS  PubMed  Google Scholar 

  • Yi X, McChargue M, Laborde S, Frankel LK, Bricker TM (2005) The manganese-stabilizing protein is required for photosystem II assembly/stability and photoautotrophy in higher plants. J Biol Chem 280:16170–16174

    Article  CAS  PubMed  Google Scholar 

  • Yousuf PY, Hakeem KUR, Chandna R, Ahmad P (2012) Role of glutathione reductase in plant abiotic stress. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants. Springer, New York, pp 149–158

    Chapter  Google Scholar 

  • Yousuf PY, Ahmad A, Ganie AH, Iqbal M (2015) Salt stress-induced modulations in the shoot proteome of Brassica juncea genotypes. Environ Sci Pollut Res. doi:10.1007/s11356-015-5441-3

    Google Scholar 

Download references

Acknowledgments

The first author thanks the Hamdard National Foundation, New Delhi, for the award of a Research Fellowship. Financial assistance provided by the Department of Biotechnology, Government of India, for conducting this study is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Iqbal.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Handling Editor: Peter Nick

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 570 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousuf, P.Y., Ahmad, A., Aref, I.M. et al. Salt-stress-responsive chloroplast proteins in Brassica juncea genotypes with contrasting salt tolerance and their quantitative PCR analysis. Protoplasma 253, 1565–1575 (2016). https://doi.org/10.1007/s00709-015-0917-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-015-0917-z

Keywords

Navigation