Skip to main content
Log in

Singlet oxygen affects the activity of the thylakoid ATP synthase and has a strong impact on its γ subunit

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Singlet oxygen is reported to have the most potent damaging effect upon the photosynthetic machinery. Usually this reactive oxygen molecule acts in concert with other ROS types under stressful conditions. To understand the specific role of singlet oxygen we took advantage of the conditional flu mutant of Arabidopsis thaliana. In flu, the negative feedback loop is abolished, which blocks chlorophyll biosynthesis in the dark. Therefore high amounts of free protochlorophyllide accumulate during darkness. If flu gets subsequently illuminated, free protochlorophyllide acts as a photosensitiser leading almost exclusively to high amounts of 1O2. Analysing the thylakoid protein pattern by using 2D PAGE and subsequent MALDI-TOF analysis, we could show, in addition to previous described effects on photosystem II, that singlet oxygen has a massive impact on the thylakoid ATP synthase, especially on its γ subunit. Additionally, it could be shown that the activity of the ATP synthase is reduced upon singlet oxygen exposure and that the rate of non-photochemical quenching is affected in flu mutants exposed to 1O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

2D PAGE:

Two-dimensional polyacrylamide gel electrophoresis

ATP:

Adenosine triphosphate

LUC:

Firefly luciferase

MALDI-TOF:

Matrix-assisted laser desorption/ionisation time-of-flight

NPQ:

Non-photochemical quenching

1O2 :

Singlet oxygen

ROS:

Reactive oxygen species

References

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot (Lond) 91 Spec No:179–194

    Google Scholar 

  • Bosco CD, Lezhneva L, Biehl A, Leister D, Strotmann H, Wanner G, Meurer J (2004) Inactivation of the chloroplast ATP synthase gamma subunit results in high non-photochemical fluorescence quenching and altered nuclear gene expression in Arabidopsis thaliana. J Biol Chem 279:1060–1069

    Article  PubMed  Google Scholar 

  • Charles SA, Halliwell B (1980) Effect of hydrogen peroxide on spinach (Spinacia oleracea) chloroplast fructose bisphosphatase. Biochem J 189:373–376

    PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (1999) Leaves in the dark see the light. Science 284:599–601

    Article  PubMed  CAS  Google Scholar 

  • Friso G, Giacomelli L, Ytterberg AJ, Peltier JB, Rudella A, Sun Q, Wijk KJ (2004) In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database. Plant Cell 16:478–499

    Article  PubMed  CAS  Google Scholar 

  • Gorman AA, Rodgers MA (1992) Current perspectives of singlet oxygen detection in biological environments. J Photochem Photobiol B 14:159–176

    Article  PubMed  CAS  Google Scholar 

  • Hideg E, Barta C, Kalai T, Vass I, Hideg K, Asada K (2002) Detection of singlet oxygen and superoxide with fluorescent sensors in leaves under stress by photoinhibition or UV radiation. Plant Cell Physiol 43:1154–1164

    Article  PubMed  CAS  Google Scholar 

  • Hisabori T, Motohashi K, Kroth P, Strotmann H, Amano T (1998) The formation or the reduction of a disulfide bridge on the gamma subunit of chloroplast ATP synthase affects the inhibitory effect of the epsilon subunit. J Biol Chem 273:15901–15905

    Article  PubMed  CAS  Google Scholar 

  • Jabs T (1999) Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem Pharmacol 57:231–245

    Article  PubMed  CAS  Google Scholar 

  • Kanazawa A, Kramer DM (2002) In vivo modulation of nonphotochemical exciton quenching (NPQ) by regulation of the chloroplast ATP synthase. Proc Natl Acad Sci USA 99:12789–12794

    Article  PubMed  CAS  Google Scholar 

  • Keren N, Berg A, van Kan PJ, Levanon H, Ohad II (1997) Mechanism of photosystem II photoinactivation and D1 protein degradation at low light: the role of back electron flow. Proc Natl Acad Sci USA 94:1579–1584

    Article  PubMed  CAS  Google Scholar 

  • Meskauskiene R, Apel K (2002) Interaction of FLU, a negative regulator of tetrapyrrole biosynthesis, with the glutamyl-tRNA reductase requires the tetratricopeptide repeat domain of FLU. FEBS Lett 532:27–30

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Muller P, Li XP, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    Article  PubMed  CAS  Google Scholar 

  • Murray J, Taylor SW, Zhang B, Ghosh SS, Capaldi RA (2003) Oxidative damage to mitochondrial complex I due to peroxynitrite: identification of reactive tyrosines by mass spectroscopy. J Biol Chem 278:37223–37230

    Article  PubMed  CAS  Google Scholar 

  • Neuhoff V, Arold N, Taube D, Ehrhardt W (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9:255–262

    Article  PubMed  CAS  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359

    Article  PubMed  CAS  Google Scholar 

  • op den Camp RG, Przybyla D, Ochsenbein C, Laloi C, Kim C, Danon A, Wagner D, Hideg E, Gobel C, Feussner I, Nater M, Apel K (2003) Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell 15:2320–2332

    Article  PubMed  CAS  Google Scholar 

  • Pascal AA, Liu Z, Broess K, van Oort B, van Amerongen H, Wang C, Horton P, Robert B, Chang W, Ruban A (2005) Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature 436:134–137

    Article  PubMed  CAS  Google Scholar 

  • Roeder B, Naether D, Lewald T, Braune M, Nowak C, Freyer W (1990) Photophysical properties and photodynamic activity in vivo of some tetrapyrroles. Biophys Chem 35:303–312

    Article  PubMed  CAS  Google Scholar 

  • Schmitt S, Glebe D, Alving K, Tolle TK, Linder M, Geyer H, Linder D, Peter-Katalinic J, Gerlich WH, Geyer R (1999) Analysis of the pre-S2 N- and O-linked glycans of the M surface protein from human hepatitis B virus. J Biol Chem 274:11945–11957

    Article  PubMed  CAS  Google Scholar 

  • Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  PubMed  CAS  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama K, Hisabori T (2003) Conformational change of the chloroplast ATP synthase on the enzyme activation process detected by the trypsin sensitivity of the gamma subunit. Biochem Biophys Res Commun 301:311–316

    Article  PubMed  CAS  Google Scholar 

  • Telfer A, Bishop SM, Phillips D, Barber J (1994) Isolated photosynthetic reaction center of photosystem II as a sensitizer for the formation of singlet oxygen. Detection and quantum yield determination using a chemical trapping technique. J Biol Chem 269:13244–13253

    PubMed  CAS  Google Scholar 

  • Trebst A (2003) Function of beta-carotene and tocopherol in photosystem II. Z Naturforsch [C] 58:609–620

    CAS  Google Scholar 

  • Vener AV, Ohad I, Andersson B (1998) Protein phosphorylation and redox sensing in chloroplast thylakoids. Curr Opin Plant Biol 1:217–223

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Klaus Apel (ETH Zurich, Switzerland) for providing the flu mutant, Jon Hughes (Justus-Liebig University, Giessen, Germany) for critical reading of the manuscript and many helpful discussions. We are gratefully indebted to Melanie Bingel and André Imboden for technical assistance. This work was supported by the Justus-Liebig University, Giessen and in parts by the Swiss National Science Foundation (K. Apel).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Forreiter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahler, H., Wuennenberg, P., Linder, M. et al. Singlet oxygen affects the activity of the thylakoid ATP synthase and has a strong impact on its γ subunit. Planta 225, 1073–1083 (2007). https://doi.org/10.1007/s00425-006-0416-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0416-8

Keywords

Navigation