Skip to main content
Log in

Expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in Escherichia coli and Arabidopsis enhances heavy metal(loid)s accumulation

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Phytochelatin synthase (PCS) gene encoding key enzyme for heavy metal detoxification and accumulation has been characterised from different sources and used to develop a technology for bioremediation. Past efforts provided limited success and contradictory results. Therefore, functional characterisation of PCS gene from new sources into different target systems is considered as an important task in the area of bioremediation. Earlier, we isolated and functionally characterised PCS gene from an aquatic macrophyte Ceratophyllum demersum L., a metal accumulator aquatic plant. Expression of this gene, CdPCS1, in tobacco enhanced PC synthesis and metal accumulation of transgenic tobacco plants. In the present study, we have expressed CdPCS1 in more diverse systems, Escherichia coli and Arabidopsis, and studied growth and metal accumulation of transgenic organisms. The expression of CdPCS1 in E. coli offered tolerance against cadmium as well as higher accumulation accompanied with PCS1 activity. The expression of CdPCS1 in Arabidopsis showed a significant enhanced accumulation of heavy metal(loid)s in aerial parts without significant difference in growth parameters in comparison to wild-type Arabidopsis plants. Our study suggests that CdPCS1 can be utilised for enhancing bioremediation potential of different organisms using biotechnological approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

As(III):

Arsenite

As(V):

Arsenate

Cd:

Cadmium

FW:

Fresh weight

IPTG:

Isopropyl β-d-1-thiogalactopyranoside

PC:

Phytochelatin

PCS:

Phytochelatin synthase

WT:

Wild type

References

  • Abhilash PC, Jamil S, Singh N (2009) Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol Adv 27:474–488

    Article  PubMed  CAS  Google Scholar 

  • Bae W, Mehra RK, Mulchandani A, Chen W (2001) Genetic engineering of Escherichia coli for enhanced uptake and bioaccumulation of mercury. Appl Environ Microbiol 67:5335–5338

    Article  PubMed  CAS  Google Scholar 

  • Brunetti P, Zanella L, Proia A, De Paolis A, Falasca G, Altamura MM, Sanità di Toppi L, Costantino P, Cardarelli M (2011) Cadmium tolerance and phytochelatin content of Arabidopsis seedlings over-expressing the phytochelatin synthase gene AtPCS1. J Exp Bot 62:5509–5519

    Article  PubMed  CAS  Google Scholar 

  • Chaurasia N, Mishra Y, Rai LC (2008) Cloning expression and analysis of phytochelatin synthase (pcs) gene from Anabaena sp. PCC 7120 offering multiple stress tolerance in Escherichia coli. Biochem Biophys Res Commun 376:225–230

    Article  PubMed  CAS  Google Scholar 

  • Chen A, Komives EA, Schroeder JI (2006) An improved grafting technique for mature Arabidopsis plants demonstrates long-distance shoot-to-root transport of phytochelatins in Arabidopsis. Plant Physiol 141:108–120

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Zhou J, Goldsbrough PB (1997) Characterization of phytochelatin synthase from tomato. Plant Physiol 101:165–72

    Article  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr Opin Plant Biol 3:211–216

    PubMed  CAS  Google Scholar 

  • Cobbett CS, Goldsbrough PB (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  PubMed  CAS  Google Scholar 

  • Dwivedi S, Tripathi RD, Srivastava S, Singh R, Kumar A, Tripathi P, Dave R, Rai UN, Chakrabarty D, Trivedi PK, Tuli R, Adhikari B, Bag MK (2010) Arsenic affects mineral nutrients in grains of various Indian rice (Oryza sativa L.) genotypes grown on arsenic-contaminated soils of West Bengal. Protoplasma 245:113–124

    Article  PubMed  CAS  Google Scholar 

  • Gasic K, Korban SS (2007a) Expression of Arabidopsis phytochelatin synthase in Indian mustard (Brassica juncea) plants enhances tolerance for Cd and Zn. Planta 225:1277–1285

    Article  PubMed  CAS  Google Scholar 

  • Gasic K, Korban SS (2007b) Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. Plant Mol Biol 64:361–369

    Article  PubMed  CAS  Google Scholar 

  • Gautam N, Verma PK, Verma S, Tripathi RD, Trivedi PK, Adhikari B, Chakrabarty D (2012) Genome-wide identification of rice class I metallothionein gene: tissue expression patterns and induction in response to heavy metal stress. Funct Integr Genom 12:635–647

    Article  CAS  Google Scholar 

  • Gill SS, Khan NA, Tuteja N (2012) Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L). Plant Sci 182:112–120

    Article  PubMed  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  PubMed  CAS  Google Scholar 

  • Gisbert C, Ros R, De Haro A, Walker DJ, Pilar BM, Serrano R, Navarro-Aviñó J (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303:440–444

    Article  PubMed  CAS  Google Scholar 

  • Glaeser H, Coblenz A, Kruczek R, Ruttke I, Ebert-Jung A, Wolf K (1991) Glutathione metabolism and heavy metal detoxification in Schizosaccharomyces pombe. Curr Genet 19:207–213

    Article  CAS  Google Scholar 

  • Gong JM, Lee DA, Schroeder JI (2003) Long-distance root to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proc Natl Acad Sci USA 100:10118–10123

    Article  PubMed  CAS  Google Scholar 

  • Kang SH, Singh S, Kim JY, Lee W, Mulchandani A, Chen W (2007) Bacteria metabolically engineered for enhanced phytochelatin production and cadmium accumulation. Appl Environ Microbiol 73:6317–6320

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Asif MH, Chakrabarty D, Tripathi RD, Dubey RS, Trivedi PK (2013a) Expression of a rice Lambda class of glutathione S-transferase, OsGSTL2, in Arabidopsis provides tolerance to heavy metal and other abiotic stresses. J Hazard Mater 15:248–249

    Google Scholar 

  • Kumar S, Asif MH, Chakrabarty D, Tripathi RD, Dubey RS, Trivedi PK (2013b) Differential expression of rice Lambda class GST gene family members during plant growth, development, and in response to stress conditions. Plant Mol Biol Rep. doi:10.1007/s11105-012-0524-5

    Google Scholar 

  • Lappartient AG, Touraine B (1996) Demand-driven control of root ATP sulfurylase activity and SO4 2− uptake in intact canola (the role of phloem-translocated glutathione). Plant Physiol 111:147–157

    PubMed  CAS  Google Scholar 

  • Lee S, Moon JS, Ko TS, Petros D, Goldsbrough PB, Korban SS (2003) Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol 131:656–663

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Dhankher OM, Carreira L, Lee D, Chen A, Schroeder JI, Balish RS, Meagher RB (2004) Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity. Plant Cell Physiol 45:1787–1797

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Dankher OP, Carreira L, Smith AP, Meagher RB (2006) The shootspecific expression of gammaglutamylcysteine synthetase directs the long-distance transport of thiolpeptides to roots conferring tolerance to mercury and arsenic. Plant Physiol 141:288–298

    Google Scholar 

  • Liu GY, Zhang YX, Chai TY (2011) Phytochelatin synthase of Thlaspi caerulescens enhanced tolerance and accumulation of heavy metals when expressed in yeast and tobacco. Plant Cell Rep 30:1067–1076

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Gu C, Chen F, Yang D, Wu K, Chen S, Jiang J, Zhang Z (2012) Heterologous expression of a Nelumbo nucifera phytochelatin synthase gene enhances cadmium tolerance in Arabidopsis thaliana. Appl Biochem Biotechnol 166:722–734

    Article  PubMed  CAS  Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    Article  PubMed  CAS  Google Scholar 

  • Mehra RK, Winge DR (1991) Metal-ion resistance in fungi—molecular mechanisms and their regulated expression. J Cell Biochem 45:30–40

    Article  PubMed  CAS  Google Scholar 

  • Mejare M, Bulow L (2001) Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol 19:67–73

    Article  PubMed  CAS  Google Scholar 

  • Mendoza-Cózatl DG, Butko E, Springer F, Torpey JW, Komives EA, Kehr J (2008) Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant J 54:249–259

    Article  PubMed  Google Scholar 

  • Minocha R, Thangavel P, Dhankher OP, Long S (2008) Separation and quantification of monothiols and phytochelatins from a wide variety of cell cultures and tissues of tree and other plants using high performance liquid chromatography. J Chromatogr A 1207:72–83

    Article  PubMed  CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Dwivedi S, Shukla MK (2008a) Response of antioxidant enzymes in coontail (Ceratophyllum demersum L.) plants under cadmium stress. Environ Toxicol 23:294–301

    Article  PubMed  CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK (2006) Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65:1027–1039

    Article  PubMed  CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Trivedi PK (2008b) Thiol metabolism and antioxidant systems complement each other during arsenate detoxification in Ceratophyllum demersum L. Aquat Toxicol 31:205–215

    Article  Google Scholar 

  • Mishra S, Tripathi RD, Srivastava S, Dwivedi S, Trivedi PK, Dhankher OP, Khare A (2009) Thiol metabolism play significant role during cadmium detoxification by Ceratophyllum demersum L. Bioresour Technol 100:2155–2161

    Article  PubMed  CAS  Google Scholar 

  • Ogawa S, Yoshidomi T, Shirabe T, Yoshimura E (2010) HPLC method for the determination of phytochelatins synthase activity specific for soft metal ion chelators. J Inorg Biochem 104:442–445

    Article  PubMed  CAS  Google Scholar 

  • Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83:346–356

    Article  PubMed  CAS  Google Scholar 

  • Pomponi M, Censi V, Di Girolamo V, De Paolis A, di Toppi LS, Aromolo R, Costantino P, Cardarelli M (2006) Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd2+ tolerance and accumulation but not translocation to the shoot. Planta 223:180–190

    Article  PubMed  CAS  Google Scholar 

  • Rabenstein DL (1989) Metal complexes of glutathione and their biological significance. In: Dolphin D, Poulson R, Avramovic O (eds) Glutathione: chemical, biochemical and medical aspects. Wiley, New York, pp 147–186

    Google Scholar 

  • Rea PA (2012) Phytochelatin synthase: of a protease a peptide polymerase made. Physiol Plant 145:154–64

    Article  PubMed  CAS  Google Scholar 

  • Sauge-Merle S, Cuine S, Carrier P, Lecomte-Pradines C, Luu DT, Peltier G (2003) Enhanced toxic metal accumulation in engineered bacterial cells expressing Arabidopsis thaliana phytochelatin synthase. Appl Environ Microbiol 69:490–494

    Article  PubMed  CAS  Google Scholar 

  • Say R, Yilmaz N, Denizli A (2003) Biosorption of cadmium, lead, mercury, and arsenic ions by the fungus Penicillium purpurogenum. Sep Sci Technol 38:2039–2053

    Article  CAS  Google Scholar 

  • Shukla D, Kesari R, Mishra S, Dwivedi S, Tripathi RD, Nath P, Trivedi PK (2012) Expression of phytochelatin synthase from aquatic macrophyte Ceratophyllum demersum L. enhances cadmium and arsenic accumulation in tobacco. Plant Cell Rep 31:1687–1699

    Article  PubMed  CAS  Google Scholar 

  • Shukla D, Tiwari M, Tripathi RD, Nath P, Trivedi PK (2013) Synthetic phytochelatins complement a phytochelatin-deficient Arabidopsis mutant and enhance the accumulation of heavy metal(loid)s. Biochem Biophys Res Commun 434:664–669

    Google Scholar 

  • Singh S, Kang SH, Lee W, Mulchandani A, Chen W (2010) Systematic engineering of phytochelatin synthesis and arsenic transport for enhanced arsenic accumulation in E. coli. Biotechnol Bioeng 105:780–785

    PubMed  CAS  Google Scholar 

  • Singh S, Lee W, DaSilva NA, Mulchandani A, Chen W (2008) Enhanced arsenic accumulation and removal by engineered yeast cells expressing Arabidopsis thaliana phytochelatin synthase. Biotechnol Bioeng 99:333–340

    Article  PubMed  CAS  Google Scholar 

  • Tripathi P, Tripathi RD, Singh RP, Dwivedi S, Chakrabarty D, Trivedi PK, Adhikari B (2013) Arsenite tolerance in rice (Oryza sativa L.) involves coordinated role of metabolic pathways of thiols and amino acids. Environ Sci Pollut Res Int 20:884–896

    Article  PubMed  CAS  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJ (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165

    Article  PubMed  CAS  Google Scholar 

  • Tsai SL, Singh S, Dasilva NA, Chen W (2012) Co-expression of Arabidopsis thaliana phytochelatin synthase Treponema denticola cysteine desulfhydrase for enhanced arsenic accumulation. Biotechnol Bioeng 109:605–608

    Article  PubMed  CAS  Google Scholar 

  • Tuli R, Chakrabarty D, Trivedi PK, Tripathi RD (2010) Recent advances in arsenic accumulation and metabolism in rice. Mol Breeding 26:307–323

    Article  CAS  Google Scholar 

  • Vatamaniuk OK, Mari S, Lu YP, Rea PA (1999) AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proc Nat Acad Sci USA 96:7110–7115

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Wang Z, Zhu C (2012) Heteroexpression of the wheat phytochelatin synthase gene (TaPCS1) in rice enhances cadmium sensitivity. Acta Biochim Biophys Sin (Shanghai) 44:886–893

    Article  CAS  Google Scholar 

  • Wawrzyński A, Gaganidze D, Kopera E, Piatek K, Bal W, Sirko A (2005) Overexpression of genes involved in phytochelatin biosynthesis in Escherichia coli: effects on growth, cadmium accumulation and thiol level. Acta Biochim Pol 52:109–16

    PubMed  Google Scholar 

  • Wojas S, Clemens S, Hennig J, Skodowska A, Kopera E, Schat H, Bal W, Antosiewicz DM (2008) Overexpression of phytochelatin synthase in tobacco: distinctive effects of AtPCS1 and CePCS genes on plant response to cadmium. J Exp Bot 92:1–15

    Google Scholar 

  • Wojas S, Clemens S, Skłodowska A, Maria Antosiewicz D (2010a) Arsenic response of AtPCS1- and CePCS-expressing plants—effects of external As(V) concentration on As-accumulation pattern and NPT metabolism. J Plant Physiol 15:169–175

    Article  Google Scholar 

  • Wojas S, Ruszczyńska A, Bulska E, Clemens S, Antosiewicz DM (2010b) The role of subcellular distribution of cadmium and phytochelatins in the generation of distinct phenotypes of AtPCS1- and CePCS3-expressing tobacco. J Plant Physiol 167:981–988

    Article  PubMed  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants: a review. Gene 179:21–30

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the Council of Scientific and Industrial Research (CSIR), Government of India, for providing a financial support to carry out a study under Network Project (BSC0107). DS and MT acknowledge the Council of Scientific and Industrial Research and the Indian Council of Medical Research, Government of India, for Senior Research Fellowships, respectively.

Conflict of Interest

All the authors declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabodh Kumar Trivedi.

Additional information

Handling Editor: Bhumi Nath Tripathi

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1

Colony PCR confirmation of construct pGEX4T2:CdPCS1 with gene-specific primers in E. coli BL21 (DE3). Confirmation of recombinant E. coli strain BL21 through colony PCR using CdPCS1 forward and CdPCS1 reverse primers. Numbers 1, 2, 3… represent independent colonies of E. coli. M, ʎ DNA digested HindIII and EcoRI used as a marker (PPT 139 kb)

Supplementary Fig. S2

Comparative display of control or recombinant E. coli growth in the presence or absence of Cd stress. This figure represents the optical density of secondary culture after 5-h growth of control or recombinant E. coli with or without Cd. Growth of E. coli cells (BL21 mock; circle), E. coli cells containing empty vector pGEX-4T2 (triangle) and recombinant plasmid pGEX-4T2-CdPCS1 (rectangle), respectively. Empty and filled markers represent with and without Cd treatment. For detail, please see “Materials and methods”) (PPT 3071 kb)

Supplementary Fig. S3

Fluorescence HPLC chromatograms of the mBBr-labelled E. coli extract to measure PCS activity. Lysate from IPTG-induced cells was used for measuring in vitro enzyme activity in the presence of Cd (100 μM). Quantity of PC2 produced by CdPCS1 enzyme was estimated through fluorescence HPLC (PPT 205 kb)

Supplementary Table S4

List of oligonucleotides used in the study (DOC 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shukla, D., Kesari, R., Tiwari, M. et al. Expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in Escherichia coli and Arabidopsis enhances heavy metal(loid)s accumulation. Protoplasma 250, 1263–1272 (2013). https://doi.org/10.1007/s00709-013-0508-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-013-0508-9

Keywords

Navigation