Skip to main content

Advertisement

Log in

Heterologous Expression of a Nelumbo nucifera Phytochelatin Synthase Gene Enhances Cadmium Tolerance in Arabidopsis thaliana

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Phytochelatin synthase (PCS) is a key enzyme involved in the synthesis of phytochelatins, which are thought to play important roles in heavy metal detoxification. The sacred lotus (Nelumbo nucifera), one of the most popular ornamental species, has been shown to be a potential phytoremediator of heavy metal polluted water. However, the phytochelatin synthase gene in N. nucifera has not been identified yet. Here, we report the isolation and function characterization of a N. nucifera homologue of phytochelatin synthase. The sequence obtained shares a high degree of similarity with PCSs from other plant species and was named as Nelumbo nucifera phytochelatin synthase1 (NnPCS1). By using quantitative RT-PCR, we found that the expression of NnPCS1 in leaves of N. nucifera was dramatically increased in response to Cadmium (Cd) treatment. We further showed that, when exposed to Cd stress, Arabidopsis transgenic plants heterologous expressing NnPCS1 accumulated more Cd when compared with wild type. These results suggest that NnPCS1 involved in the response of N. nucifera to Cd stress and may represent a useful target gene for the phytoremediation of Cd-polluted water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brulle, F., Cocquerelle, C., Wamalah, A. N., Morgan, A. J., Kille, P., Leprêtre, A., & Vandenbulcke, F. (2008). cDNA cloning and expression analysis of Eisenia fetida (Annelida: Oligochaeta) phytochelatin synthase under cadmium exposure. Ecotoxicology and Environmental Safety, 71, 47–55.

    Article  CAS  Google Scholar 

  2. Liu, J., Dong, Y., Xu, H., Wang, D., & Xu, J. (2007). Accumulation of Cd, Pb and Zn by 19 wetland plant species in constructed wetland. Journal of Hazardous Materials, 147, 947–953.

    Article  CAS  Google Scholar 

  3. Arao, T., Ae, N., Sugiyama, M., & Takahashi, M. (2003). Genotypic differences in cadmium uptake and distribution in soybeans. Plant and Soil, 251, 247–253.

    Article  CAS  Google Scholar 

  4. Salt, D. E., Prince, R. C., Pickering, I. J., & Raskin, I. (1995). Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiology, 109, 1427–1433.

    CAS  Google Scholar 

  5. Grill, E., Winnacker, E. L., & Zenk, M. H. (1985). Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science, 230, 674–676.

    Article  CAS  Google Scholar 

  6. Cobbett, C. S. (1999). A family of phytochelatin synthase genes from plant, fungal and animal species. Trends in Plant Science, 4, 335–337.

    Article  Google Scholar 

  7. Cobbett, C., & Goldsbrough, P. (2002). Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology, 53, 159–182.

    Article  CAS  Google Scholar 

  8. Kondo, N., Imai, K., Isobe, M., Goto, T., Murasugi, A., Wada-Nakagawa, C., & Hayashi, Y. (1984). Cadystin a and b, major unit peptides comprising cadmium binding peptides induced in a fission yeast—separation, revision of structures and synthesis. Tetrahedron Letters, 25, 3869–3872.

    Article  CAS  Google Scholar 

  9. Hirata, K., Tsuji, N., & Miyamoto, K. (2005). Biosynthetic regulation of phytochelatins, heavy metal-binding peptides. Journal of Bioscience and Bioengineering, 100, 593–599.

    Article  CAS  Google Scholar 

  10. Grill, E., Löffler, S., Winnacker, E. L., & Zenk, M. H. (1989). Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ—glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proceedings of the National Academy of Sciences of the United States of America, 86, 6838–6842.

    Article  CAS  Google Scholar 

  11. Clemens, S., Kim, E. J., Neumann, D., & Schroeder, J. I. (1999). Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. The EMBO Journal, 18, 3325–3333.

    Article  CAS  Google Scholar 

  12. Ha, S. B., Smith, A. P., Howden, R., Dietrich, W. M., Bugg, S., O'Connell, M. J., Goldsbrough, P. B., & Cobbett, C. S. (1999). Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. The Plant Cell Online, 11, 1153–1163.

    Article  CAS  Google Scholar 

  13. Vatamaniuk, O. K., Mari, S., Lu, Y. P., & Rea, P. A. (1999). AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proceedings of the National Academy of Sciences of the United States of America, 96, 7110–7115.

    Article  CAS  Google Scholar 

  14. Oven, M., Page, J. E., Zenk, M. H., & Kutchan, T. M. (2002). Molecular characterization of the homo-phytochelatin synthase of soybean Glycine max: relation to phytochelatin synthase. Journal of Biological Chemistry, 277, 4747.

    Article  CAS  Google Scholar 

  15. Dunbabin, J. S., & Bowmer, K. H. (1992). Potential use of constructed wetlands for treatment of industrial wastewaters containing metals. Science of the Total Environment, 111, 151–168.

    Article  CAS  Google Scholar 

  16. Demrezen, D., & Aksoy, A. (2004). Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living in Sultan Marsh (Kayseri, Turkey). Chemosphere, 56, 685–696.

    Article  Google Scholar 

  17. Weis, J. S., & Weis, P. (2004). Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environment International, 30, 685–700.

    Article  CAS  Google Scholar 

  18. Vajpayee, P., Sharma, S., Tripathi, R., Rai, U., & Yunus, M. (1999). Bioaccumulation of chromium and toxicity to photosynthetic pigments, nitrate reductase activity and protein content of Nelumbo nucifera gaertin. Chemosphere, 39, 2159–2169.

    Article  CAS  Google Scholar 

  19. Miao, H., Jiang, B., Chen, S., Zhang, S., Chen, F., Fang, W., Teng, N., & Guan, Z. (2010). Isolation of a gibberellin 20-oxidase cDNA from and characterization of its expression in chrysanthemum. Plant Breeding, 128, 1–8.

    Google Scholar 

  20. Zhang, H., Xu, W., Guo, J., He, Z., & Ma, M. (2005). Coordinated responses of phytochelatins and metallothioneins to heavy metals in garlic seedlings. Plant Science, 169, 1059–1065.

    Article  CAS  Google Scholar 

  21. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25, 402–408.

    Article  CAS  Google Scholar 

  22. Gu, C., Chen, S., Liu, Z., Shan, H., Luo, H., Guan, Z., & Chen, F. (2011). Reference gene selection for quantitative real-time PCR in chrysanthemum subjected to biotic and abiotic stress. Molecular Biotechnology, 1, 1–6.

    Google Scholar 

  23. Ma, Y., Lin, S. Q., Gao, Y., Li, M., Luo, W. X., Zhang, J., & Xia, N. S. (2003). Expression of ORF2 partial gene of hepatitis E virus in tomatoes and immunoactivity of expression products. World Journal of Gastroenterology, 9, 2211–2215.

    CAS  Google Scholar 

  24. Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 16, 735–743.

    Article  CAS  Google Scholar 

  25. Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6, 3901–3907.

    CAS  Google Scholar 

  26. Lee, S., Moon, J. S., Ko, T. S., Petros, D., Goldsbrough, P. B., & Korban, S. S. (2003). Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiology, 131, 656–663.

    Article  CAS  Google Scholar 

  27. Heiss, S., Wachter, A., Bogs, J., Cobbett, C., & Rausch, T. (2003). Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure. Journal of Experimental Botany, 54, 1833.

    Article  CAS  Google Scholar 

  28. Gasic, K., & Korban, S. S. (2007). Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. Plant Molecular Biology, 64, 361–369.

    Article  CAS  Google Scholar 

  29. Gasic, K., & Korban, S. S. (2007). A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Planta, 225, 1277–1285.

    Article  CAS  Google Scholar 

  30. Gisbert, C., Ros, R., De Haro, A., Walker, D. J., Pilar Bernal, M., Serrano, R., & Navarro-Aviñó, J. (2003). A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochemical and Biophysical Research Communications, 303, 440–445.

    Article  CAS  Google Scholar 

  31. Martinez, M., Bernal, P., Almela, C., Vélez, D., García-Agustín, P., Serrano, R., & Navarro-Avino, J. (2006). An engineered plant that accumulates higher levels of heavy metals than Thlaspi caerulescens, with yields of 100 times more biomass in mine soils. Chemosphere, 64, 478–485.

    Article  CAS  Google Scholar 

  32. Guo, J., Dai, X., Xu, W., & Ma, M. (2008). Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere, 72, 1020–1026.

    Article  CAS  Google Scholar 

  33. Maier, T., Yu, C., Küllertz, G., & Clemens, S. (2003). Localization and functional characterization of metal-binding sites in phytochelatin synthases. Planta, 218, 300–308.

    Article  CAS  Google Scholar 

  34. Lee, S., & Korban, S. S. (2002). Transcriptional regulation of Arabidopsis thaliana phytochelatin synthase (AtPCS1) by cadmium during early stages of plant development. Planta, 215, 689–693.

    Article  CAS  Google Scholar 

  35. Meuwly, P., & Rauser, W. E. (1992). Alteration of thiol pools in roots and shoots of maize seedlings exposed to cadmium: adaptation and developmental cost. Plant Physiology, 99, 8–15.

    Article  CAS  Google Scholar 

  36. Zhu, Y. L., Pilon-Smits, E. A. H., Tarun, A. S., Weber, S. U., Jouanin, L., & Terry, N. (1999). Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Plant Physiology, 121, 1169–1171.

    Article  CAS  Google Scholar 

  37. Wawrzyński, A., Kopera, E., Wawrzyńska, A., Kamińska, J., Bal, W., & Sirko, A. (2006). Effects of simultaneous expression of heterologous genes involved in phytochelatin biosynthesis on thiol content and cadmium accumulation in tobacco plants. Journal of Experimental Botany, 57, 2173–2182.

    Article  Google Scholar 

  38. Li, J., Guo, J., Xu, W., & Ma, M. (2006). Enhanced cadmium accumulation in transgenic tobacco expressing the phytochelatin synthase gene of Cynodon dactylon L. Journal of Integrative Plant Biology, 48, 928–937.

    Article  CAS  Google Scholar 

  39. Pomponi, M., Censi, V., Di Girolamo, V., De Paolis, A., di Toppi, L. S., Aromolo, R., Costantino, P., & Cardarelli, M. (2006). Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd(2+) tolerance and accumulation but not translocation to the shoot. Planta, 223, 180–190.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by the National Natural Science Foundation of China (grant no. 30872064, 31071820, 31071825), the Program for Hi-Tech Research, Jiangsu, China, (grant no. BE2008307, BE2009317, BE2010303) and the Fundamental Research Funds for the Central Universities (KYJ 200907).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Gu, C., Chen, F. et al. Heterologous Expression of a Nelumbo nucifera Phytochelatin Synthase Gene Enhances Cadmium Tolerance in Arabidopsis thaliana . Appl Biochem Biotechnol 166, 722–734 (2012). https://doi.org/10.1007/s12010-011-9461-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9461-2

Keywords

Navigation