Skip to main content
Log in

Cloning and molecular characterization of a putative bZIP transcription factor VvbZIP23 from Vitis vinifera

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The proteins harboring bZIP domains comprise a large family and play key roles in many cellular processes, one of them being tolerance to biotic and abiotic stresses in plants. In the present study, we characterize a putative bZIP transcription factor from Vitis vinifera namely VvbZIP23. Our studies revealed that a GFP fusion of VvbZIP23 is localized in the nucleus showing VvbZIP23 codes for a nuclear localized protein. VvbZIP23 identified by in silico approaches from grapevine DNA databases available in the public domain NCBI is present in a single copy in the grapevine genome as shown by Southern blot analysis. Expression of VvbZIP23 is induced by a wide spectrum of abiotic stresses, including drought, salt, and cold. Exogenous application of signaling chemicals like abscisic acid, methyl viologen, salicylic acid, jasmonic acid, and ethephon also induced expression of VvbZIP23. This shows that VvbZIP23 is involved in regulating a number of stress responses in V. vinifera. The 5′ proximal region of VvbZIP23 contains many cis-acting elements, which show induction of VvbZIP23 expression in multiple stress responses. Transcripts of VvbZIP23 were found in many parts of the grapevine plant with the highest expression detected in leaves. Further in silico analysis shows that the open reading frame of VvbZIP23 is 822 bp long and codes for a 273 amino acid long protein having a characteristic bZIP domain in its N-terminal end. Overexpression of VvbZIP23-GFP fusion protein in grapevine callus leads to enhanced transcript levels of genes, homologues of which are reported to be important in regulating many stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

MV:

Methyl viologen

ABA:

Abscisic acid

ACS:

Acetosyringone

TDZ:

Thidiazuron

SA:

Salicylic acid

MeJA:

Methyl jasmonate

PEG:

Polyethylene glycol

2,4-D:

2,4-Dichlorophenoxyacetic acid

ORF:

Open reading frame

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant cell 15:63–78

    Article  CAS  PubMed  Google Scholar 

  • Boneh U, Biton I, Zheng C, Schwartz A, Ari GB (2011) Characterization of potential ABA receptors in Vitis vinifera. Plant cell rep 31:311–321

    Article  PubMed  Google Scholar 

  • Brown RL, Kazan K, McGrath KC, Maclean DJ, Manners JM (2003) A role for the GCC-Box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiol 132:1020–1032

    Article  CAS  PubMed  Google Scholar 

  • Buttner M, Singh KB (1997) Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an ocs element binding protein. PNAS 94:5961–5966

    Article  CAS  PubMed  Google Scholar 

  • Cheong et al (2003) BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiol 132:1961–1972

    Article  CAS  PubMed  Google Scholar 

  • Cramer et al (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7:111–134

    Article  CAS  PubMed  Google Scholar 

  • Dalal M, Tayal D, Chinnusamy V, Bansal K (2009) Abiotic stress and ABA-inducible group 4 LEA from Brassica napus plays a key role in salt and drought tolerance. J Biotechnol 139:137–145

    Article  CAS  PubMed  Google Scholar 

  • Dana MDLM, Toro JAP, Cubero B (2006) Transgenic tobacco plants over expressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiol 142:722–730

    Article  Google Scholar 

  • Dong X (1998) SA, JA, ethylene, and disease resistance in plants. Curr Opin Plant Biol 1:316–323

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. TRENDS plants sci 5:199–206

    Article  CAS  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekama A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  • Howe G, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    Article  CAS  PubMed  Google Scholar 

  • Huang XS, Liu JH, Chen XJ (2010) Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes. BMC Plant Biol 10:230

    Article  PubMed  Google Scholar 

  • Jakoby et al (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111

    Article  CAS  PubMed  Google Scholar 

  • Kim et al (2011) An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis. Plant cell physiol 52:2136–2146

    Article  CAS  PubMed  Google Scholar 

  • Kiriaki C et al (2009) Expression of SOD transgene in pepper confer stress tolerance and improve shoot regeneration. Electron J Biotechnol. doi:10.2225/vol12-issue4-fulltext-10

    Google Scholar 

  • Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief bioinform 9:299–306

    Article  CAS  PubMed  Google Scholar 

  • Laloi C, Apel K, Danon A (2004) Reactive oxygen signaling: the latest news. Curr opin plant biol 7:323–328

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Choi HW, Hwang IS, Choi DS, Hwang BK (2006) Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses. Planta 224:1209–1225

    Article  CAS  PubMed  Google Scholar 

  • Liao Y, Zou HF, Wei W, Hao YJ, Tian AG, Huang J, Liu YF, Zhang JS, Chen SY (2008) Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta 228:225–240

    Article  CAS  PubMed  Google Scholar 

  • Malabadi RB, Vijaykumar S, Nataraja K, Mulgund GS (2010) Induction of somatic embryogenesis and plant regeneration in grapes (Vitis vinifera). Bot research int 3:48–55

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Park CH et al (2004) Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol 135:2150–2161

    Article  CAS  PubMed  Google Scholar 

  • Rocher A, Dumas C, Cock JM (2005) A W-box is required for full expression of the SA-responsive gene SFR2. Gene 344:181–192

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto et al (2004) Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol 136:2734–2746

    Article  CAS  PubMed  Google Scholar 

  • Schindler U, Menkens AE, Beckmann H, Ecker JR, Cashmore AR (1992) Heterodimerization between light-regulated and ubiquitously expressed Arabidopsis GBF bZIP proteins. EMBO J 11:1261–1273

    CAS  PubMed  Google Scholar 

  • Schlogl et al (2008) Identification of new ABA- and MeJA-activated sugarcane bZIP genes by data mining in the SUCEST database. Plant Cell Rep 27:335–345

    Article  PubMed  Google Scholar 

  • Shah J (2003) The salicylic acid loop in plant defense. Curr Opin Plant Biol 6:365–371

    Article  CAS  PubMed  Google Scholar 

  • Shekhawat U, Srinivas L, Ganapathi T (2011) MusaDHN-1, a novel multiple stress-inducible SK3-type dehydrin gene, contributes affirmatively to drought- and salt-stress tolerance in banana. Planta 234:5915–932

    Article  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    CAS  PubMed  Google Scholar 

  • Sun W, Cao Z, Li Y, Zhao Y, Zhang H (2007) A simple and effective method for protein subcellular localization using Agrobacterium-mediated transformation of onion epidermal cells. Biologia, Bratislava 62(5):529–532

    Article  CAS  Google Scholar 

  • Tattersall E et al (2007) Transcript abundance profiles reveal larger and more complex responses of grapevine to chilling compared to osmotic and salinity stress. Funct Integr Genomics 7:317–333

    Article  CAS  PubMed  Google Scholar 

  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. PNAS 97:11632–11637

    Article  CAS  PubMed  Google Scholar 

  • Vettore et al (1998) The molecular and functional characterization of an Opaque2 homologue gene from Coix and a new classification of plant bZIP proteins. Plant Mol Biol 36:249–263

    Article  CAS  PubMed  Google Scholar 

  • Xue GP, Loveridge CW (2003) HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with CT-rich elements. Plant J 37:326–339

    Article  Google Scholar 

  • Yang O, Popova OV, Süthoff U, Lüking I, Dietz KJ, Golldack D (2009) The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance. Gene 436:45–55

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Wollenweber B, Jiang D, Liu F, Zhao J (2008) Water deficits and heat shock effects on photosynthesis of a transgenic Arabidopsis thaliana constitutively expressing ABP9, a bZIP transcription factor. J Exp Bot 59:839–848

    Article  CAS  PubMed  Google Scholar 

  • Zhou et al (2008) Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J 6:486–503

    Article  CAS  PubMed  Google Scholar 

  • Zou M, Guan Y, Ren H, Zhang F, Chen F (2008) A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol Biol 66:675–683

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. S F D’Souza, Head, Nuclear Agriculture and Biotechnology Division, BARC for his constant encouragement. The authors would also like to thank Mr. Upendra Singh Shekhawat, Dr. T.R. Ganapathi, and Dr. S.B. Ghosh for constant scientific inputs.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himanshu Tak.

Additional information

Handling Editor: Peter Nick

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tak, H., Mhatre, M. Cloning and molecular characterization of a putative bZIP transcription factor VvbZIP23 from Vitis vinifera . Protoplasma 250, 333–345 (2013). https://doi.org/10.1007/s00709-012-0417-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-012-0417-3

Keywords

Navigation