Skip to main content
Log in

Cell-specific association of heat shock-induced proton flux with actin ring formation in Chenopodium cells: comparison of auto- and heterotroph cultures

  • Original Paper
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

A comparison of the responses of extracellular pH, buffering capacity and actin cytoskeleton in autotroph and heterotroph Chenopodium rubrum cells to heat shock revealed cell-specific reactions: alkalinization caused by the heat shock at 25–35°C was higher in heterotroph cells and characterized by heat shock-induced changes in the actin cytoskeleton and ring formation at 35–37°C. Rings (diameter up to 3 μm) disappeared and extracellular pH recovered after the heat-shocked cells were transferred into control medium. At 41°C, no rings but a network of coarse actin filaments were induced; at higher temperatures, fragmentation of the actin cytoskeleton and release of buffering compounds occurred, indicating sudden membrane leakage at 45–47°C. The calcium chelator EGTA [ethylene-glycol-bis(β-aminoethyl-ether)-N,N,N’,N’-tetraacetic-acid] increased the frequency of heat shock-induced rings. Ionophore (10 µM nigericin) and the sodium/proton antiport blocker [100 µM 5-(N-ethyl-N-isopropyl)-amiloride] mimicked the effect of the 37°C heat shock. The cytoskeleton inhibitors latrunculin B, cytochalasin D and 2,3-butanedione monoxime inhibited ring formation but not alkalinization. In autotroph cells, the treatment with nigericin (10 µM) produced rings, although the actin cytoskeleton was not affected by temperatures up to 45°C. We conclude that Chenopodium cells express a specific temperature sensor that has ascendancy over the organization of the actin cytoskeleton; this is probably a temperature- and potential-sensitive proton-transporting mechanism that is dependent on the culture conditions of the heterotroph cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BDM:

2,3-Butanedione monoxime

DIC:

Differential interference contrast

EGTA:

Ethylene-glycol-bis(β-aminoethyl-ether)-N,N,N’,N’-tetraacetic-acid

EIPA:

5-(N-ethyl-N-isopropyl)-amiloride

RT:

Room temperature

References

  • Atkinson M, Bina J, Sequeira L (1993) Phosphoinositide breakdown during the K+/H+ exchange response of tobacco to Pseudomonas syringae pv. Syringae. Mol Plant Microbe Interact 6:253–260

    CAS  Google Scholar 

  • Baluska F, Salaj J, Mathur J, Braun M, Jasper F, Samaj J, Chua N-H, Barlow PW, Volkmann D (2000) Root hair formation: F-actin-dependent tip growth is initiated by local assembly of profiling-supported F-actin meshworks accumulated within expansin-enriched bulges. Dev Biol 227:618–632

    Article  PubMed  CAS  Google Scholar 

  • Benjamin IJ, McMillan DR (1998) Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease. Circ Res 83:117–132

    PubMed  CAS  Google Scholar 

  • Bentrup F-W, Gogarten-Boekels M, Hoffmann B, Gogarten JP, Baumann C (1986) ATP-dependent acidification and tonoplast hyperpolarization in isolated vacuoles from green suspension cells of Chenopodium rubrum L. Proc Natl Acad Sci USA 83:2431–2433

    Article  PubMed  CAS  Google Scholar 

  • Berlin J, Sieg S, Strack D, Bokern M, Harms H (1986) Production of betalains by suspension cultures of Chenopodium rubrum L. Plant Cell Tissue Organ Cult 5:163–174

    Article  CAS  Google Scholar 

  • Bevensee MO, Bashi E, Boron WF (1999) Effect of trace levels of nigericin on intracellular pH and acid-base transport in rat mesangial cells. J Membr Biol 169:131–139

    Article  PubMed  CAS  Google Scholar 

  • Bille J, Weiser T, Bentrup F-W (1992) The lysolipid sphingosine modulates pyrophosphatase activity in tonoplast vesicles and isolated vacuoles from a heterotrophic cell suspension culture of Chenopodium rubrum. Physiol Plant 84:250–254

    Article  CAS  Google Scholar 

  • Bremberger C, Haschke H-P, Lüttge U (1988) Separation and purification of the tonoplast ATPase and pyrophosphatase from plants with constitutive and inducible Crassulacean acid metabolism. Planta 175:465–470

    Article  CAS  Google Scholar 

  • Chaidee A, Pfeiffer W (2006) Parameters for cellular viability and membrane function in Chenopodium cells show a specific response of extracellular pH to heat shock with extreme Q10. Plant Biol 8:42–51

    Article  PubMed  CAS  Google Scholar 

  • Chen S-H, Bubbs MR, Yarmola EG, Zuo J, Jiang J, Lee BS, Lu M, Gluck SL, Hurst IR, Holliday LS (2004) Vacuolar H+ -ATPase binding to microfilaments. Regulation in response to phosphatidylinositol 3-kinase activity and detailed characterization of the actin-binding site in subunit B. J Biol Chem 279:7988–7998

    Article  PubMed  CAS  Google Scholar 

  • DeCoursey TE, Cherny VV (1998) Temperature dependence of voltage-gated H+ currents in human neutrophils, rat alveolar epithelial cells, and mammalian phygocytes. J Gen Physiol 112:503–522

    Article  PubMed  CAS  Google Scholar 

  • Denker SP, Barber DL (2002) Cell migration requires both ion translocation and cytoskeletal anchoring by the Na-H exchanger NHE1. J Cell Biol 159:1087–1096

    Article  PubMed  CAS  Google Scholar 

  • de Ruijter NCA, Bisseling T, Emons AMC (1999) Rhizobium Nod factors induce an increase in sub-apical fine bundles of actin filaments in Vicia sativa root hairs within minutes. Mol Plant Microbe Interact 12:829–832

    Article  Google Scholar 

  • Drøbak BK, Franklin-Tong VE, Staiger CJ (2004) The role of the actin cytoskeleton in plant cell signaling. New Phytol 163:13–30

    Article  CAS  Google Scholar 

  • Eun S-O, Lee Y (1997) Actin filaments of guard cells are reorganized in response to light and abscisic acid. Plant Physiol 115:1491–1498

    Article  PubMed  CAS  Google Scholar 

  • Fasano JM, Swanson SJ, Blancaflor EB, Dowd PE, Kao TH, Gilroy S (2001). Changes in root cap pH are required for the gravity response of the Arabidopsis root. Plant Cell 13:907–921

    Google Scholar 

  • Felle HH (2001) pH: Signal and messenger in plant cells. Plant Biol 3:577–591

    Article  CAS  Google Scholar 

  • Foissner I, Wasteneys GO (2007) Wide-ranging effects of eight cytochalasins and latrunculin A and B on intracellular motility and actin filament reorganization in characean internodal cells. Plant Cell Physiol 48:585–597

    Article  PubMed  CAS  Google Scholar 

  • Foissner I, Grolig F, Obermeyer G (2002) Reversible protein phosphorylation regulates the dynamic organization of the pollen tube cytoskeleton: effects of calyculin A and okadaic acid. Protoplasma 220:1–15

    Article  PubMed  CAS  Google Scholar 

  • Frost AO, Roberts AW (1996) Cortical actin filaments fragment and aggregate to form chloroplast-associated and free F-actin rings in mechanically isolated Zinnia mesophyll cells. Protoplasma 194:195–207

    Article  CAS  Google Scholar 

  • Fu Y, Wu G, Yang Z (2001) Rop GTPase-dependent dynamics of Tip-localized F-actin controls tip growth in pollen tubes. J Cell Biol 152:1019–1032

    Article  PubMed  CAS  Google Scholar 

  • Gerthoffer WT, Gunst SJ (2001) Signal transduction in smooth muscle invited review: Focal adhesion and small heat shock proteins in the regulation of actin remodelling and contractility in smooth muscle. J Appl Physiol 91:963–972

    PubMed  CAS  Google Scholar 

  • Gerweck LE, Dahlberg WK, Greco B (1983) Effect of pH on single or fractionated heat treatments at 42–45°C. Cancer Res 43:1163–1167

    PubMed  CAS  Google Scholar 

  • Gibbon BC, Kovar DR, Staiger CJ (1999) Latrunculin B has different effects on pollen germination and tube growth. Plant Cell 11:2349–2363

    Article  PubMed  CAS  Google Scholar 

  • Gong M, van der Luit AH, Knight MR, Trewavas AJ (1998) Heat-shock-induced changes in intracellular Ca2+ level in tobacco seedlings in relation to thermotolerance. Plant Physiol 116:429–437

    Article  CAS  Google Scholar 

  • Grolig F (1990) Actin-based organelle movements in interphase Spirogyra. Protoplasma 155:29–42

    Article  Google Scholar 

  • Harms H, Dehnen W, Mönch W (1977) Bezo(a)pyrene metabolites formed by plant cells. Z Naturforsch 32c:321–326

    CAS  Google Scholar 

  • Hasezawa S, Nagata T, Syono K (1988) The presence of ring formed actin filaments in plant cells. Protoplasma 146:61–63

    Article  Google Scholar 

  • Holubářová A, Müller P, Svoboda A (2000) A response of yeast cells to heat stress: cell viability and the stability of cytoskeletal structures. SCR Med 73:381–392

    Google Scholar 

  • Hwang J-U, Suh S, Yi H, Kim J, Lee Y (1997) Actin filaments modulate both stomatal opening and inward K+-channel activities in guard cells of Vicia faba L. Plant Physiol 115:335–342

    PubMed  CAS  Google Scholar 

  • Iida K, Iida H, Yahara I (1986) Heat shock induction of intranuclear actin rods in cultured mammalian cells. Exp Cell Res 165:207–215

    Article  PubMed  CAS  Google Scholar 

  • Janmey PA (1998) The cytoskeleton and cell signaling: component localization and mechanical coupling. Physiol Rev 78:763–781

    PubMed  CAS  Google Scholar 

  • Kadota A, Wada M (1992) Photoinduction of formation of circular structures by microfilaments on chloroplasts during intracellular orientation in protonemal cells of the fern Adiantum capillus-veneris. Protoplasma 167:97–107

    Article  Google Scholar 

  • Ketelaar T, de Ruijter NCA, Emons AMC (2002) Unstable F-actin specifies the area and microtubule direction of cell expansion in Arabidopsis root hairs. Plant Cell 15:285–292

    Article  CAS  Google Scholar 

  • Klein JD, Ferguson IB (1987) Effect of high temperature on calcium uptake by suspension-cultured pear fruit cells. Plant Physiol 84:153–156

    PubMed  CAS  Google Scholar 

  • Kost B, Mathur J, Chua N-H (1999) Cytoskeleton in plant development. Curr Opin Plant Biol 2:462–470

    Article  PubMed  CAS  Google Scholar 

  • Kranewitter W, Gehwolf R, Nagl M, Pfeiffer W, Bentrup F (1999) Heterogeneity of the vacuolar pyrophosphatase protein from Chenopodium rubrum. Protoplasma 209:68–76

    Article  PubMed  CAS  Google Scholar 

  • Kregel KC (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92:2177–2186

    PubMed  CAS  Google Scholar 

  • Larcher W (2000) Temperature stress and survival ability of Mediterranean sclerophyllous plants. Plant Biosyst 134:279–295

    Article  Google Scholar 

  • Li J, Lee Y-RJ, Assmann SM (1998) Guard cells possess a calcium-dependent protein kinase that phosphorylates the KAT1 potassium channel. Plant Physiol 116:785–795

    Article  PubMed  CAS  Google Scholar 

  • Liang P, MacRae TH (1997) Molecular chaperones and the cytoskeleton. J Cell Sci 110:1431–1440

    PubMed  CAS  Google Scholar 

  • Linsmaier-Bednar A, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18:100–127

    Article  Google Scholar 

  • Liu H-T, Li B, Shang Z-L, Li X-Z, Mu R-L, Sun D-Y, Zhou R-G (2003) Calmodulin is involved in heat shock signal transduction in wheat. Plant Physiol 132:1186–1195

    Article  PubMed  CAS  Google Scholar 

  • Lovy-Wheeler A, Kunkel JG, Allwood EG, Hussey PJ, Hepler PK (2006) Oscillatory increases in alkalinity anticipate growth and may regulate actin dynamics in pollen tubes of lily. Plant Cell 18:2182–2193

    Article  PubMed  CAS  Google Scholar 

  • Lüttge U, Smith JAC (1984) Mechanism of passive malic-acid efflux from vacuoles of the CAM plant Kalanchoë daigremontiana. J Membr Biol 81:149–158

    Article  Google Scholar 

  • Metcalf RC (1987) Accuracy of Ross pH combination electrodes in dilute sulphuric acid standards. Analyst 112:1573–1577

    Article  CAS  Google Scholar 

  • Mounier N, Arrigo A-P (2002) Actin cytoskeleton and small heat shock proteins: how do they interact? Cell Stress Chaperones 7:167–176

    Article  PubMed  CAS  Google Scholar 

  • Müller J, Menzel D, Šamaj J (2007) Cell-type-specific disruption and recovery of the cytoskeleton in Arabidopsis thaliana epidermal root cells upon heat shock stress. Protoplasma 230:231–242

    Article  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nick P (1998) Signaling to the microtubular cytoskeleton in plants. Int Rev Cyt 184:33–80

    Article  CAS  Google Scholar 

  • Nick P (1999) Signals, motors, morphogenesis—the cytoskeleton in plant development. Plant Biol 1:169–179

    Article  CAS  Google Scholar 

  • Oecking C, Piotroski M, Hagemeier J, Hagemann K (1997) Topology and target interaction of the fusicoccin-binding 14–3–3 homologs of Commelina communis. Plant J 12:441–453

    Article  CAS  Google Scholar 

  • Peloquin JB, Doering CJ, Rehak R, McRory JE (2008) Temperature dependence of Cav1.4 calcium channel gating. Neuroscience 151:1066–1083

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer W (1998) Differential energization of the tonoplast in suspension cells and seedlings from Picea abies. Trees Structure and Function 13:112–116

    Google Scholar 

  • Pfeiffer W, Hager A (1993) A Ca2+-ATPase and a Mg2+/H+-antiporter are present on tonoplast membranes from roots of Zea mays L. Planta 191:377–385

    Google Scholar 

  • Pfeiffer W, Höftberger M (2001) Oxidative burst in Chenopodium rubrum suspension cells: induction by auxin and osmotic changes. Physiol Plant 111:144–150

    Article  CAS  Google Scholar 

  • Pressman BC (1976) Biological applications of ionophores. Annu Rev Biochem 45:501–530

    Article  PubMed  CAS  Google Scholar 

  • Samaj J, Ovecka M, Hlavacka A, Lecourieux F, Meskiene I, Lichtscheidl I, Lenart P, Salaj J, Volkmann D, Bögre L, Baluska F, Hirt H (2002) Involvement of the mitogen-activated protein kinase SIMK in regulation of root hair growth. EMBO J 21:3296–3306

    Article  PubMed  CAS  Google Scholar 

  • Sangwan V, Örvar BL, Beverly J, Hirt H, Dhindsa RS (2002) Opposite changes in membrane fluidity mimic cold and heat stress activation of MAP kinase pathways. Plant J 31:629–638

    Article  PubMed  CAS  Google Scholar 

  • Schöffl F, Prändl R, Reindl A (1998) Regulation of the heat-shock response. Plant Physiol 117:1135–1141

    Article  PubMed  Google Scholar 

  • Smertenko A, Dráber P, Viklický V, Opatrný Z (1997) Heat stress affects the organization of microtubules and cell division in Nicotiana tabacum cells. Plant Cell Environ 20:1534–1542

    Article  Google Scholar 

  • Spickett CM, Smirnoff N, Ratcliffe RG (1993) An in vivo nuclear magnetic resonance investigation of ion transport in maize (Zea mays) and Spartina anglica roots during exposure to high salt concentrations. Plant Physiol 102:2629–2638

    Google Scholar 

  • Staiger CJ (2000) Signaling to the actin cytoskeleton in plants. Annu Rev Plant Physiol Plant Mol Biol 51:257–288

    Article  PubMed  CAS  Google Scholar 

  • Tiwari SC, Polito VS (1988) Spatial and temporal organization of actin during hydration, activation, and germination of pollen in Pyrus communis L.: a population study. Protoplasma 147:5–15

    Article  Google Scholar 

  • Tominaga M, Yokota E, Sonobe S, Shimmen T (2000) Mechanism of inhibition of cytoplasmic streaming by a myosin inhibitor, 2,3-butanedione monoxime. Protoplasma 213:46–54

    Article  CAS  Google Scholar 

  • Viehweger K, Dordschbal B, Roos W (2002) Elicitor-activated phospholipase A2 generates lysophosphatidylcholines that mobilize the vacuolar H+ pool for pH signaling via the activation of Na+ -dependent proton fluxes. Plant Cell 14:1509–1525

    Article  PubMed  CAS  Google Scholar 

  • Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579–620

    Article  CAS  Google Scholar 

  • Volkov RA, Panchuk II, Schöffl F (2003) Heat-stress-dependency and developmental modulation of gene expression: the potential of house-keeping genes as internal standards in mRNA expression profiling using real-time RT-PCR. J Exp Bot 54:2343–2349

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  PubMed  CAS  Google Scholar 

  • Yokota E, Imamichi M, Tominaga M, Shimmen T (2000) Actin cytoskeleton is responsible for the change of cytoplasmic organization in root hair cells induced by a protein phosphatase inhibitor, calyculin A. Protoplasma 213:184–193

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support by the Royal Thai Government Doctoral Scholarship Programme to A.C. is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Pfeiffer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaidee, A., Foissner, I. & Pfeiffer, W. Cell-specific association of heat shock-induced proton flux with actin ring formation in Chenopodium cells: comparison of auto- and heterotroph cultures. Protoplasma 234, 33–50 (2008). https://doi.org/10.1007/s00709-008-0013-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-008-0013-8

Keywords

Navigation