Skip to main content
Log in

Interplay between structural scales and fracture process zone: experimental and numerical analysis on paper as a model material

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This work deals with fracture mechanisms in quasi-brittle materials, focusing on the characterization of the Fracture Process Zone (FPZ) of specimens under tensile load. Particularly, paper was used as model material. Experiments were conducted on notched and unnotched specimens. Based on an image analysis of these observations, a stochastic finite element model was developed, using both a nonlocal stress-based approach and a discretized random field modeling of the Young’s modulus. The proposed methodology allowed characterizing the damage zone and the size of the FPZ, analyzing the influence of the mesostructure, composed of flocs (fiber aggregates where the basis weight is larger than the average one) and antiflocs (complement of flocs). The area of the active FPZ and the normalized stress drop were linked using a surface energy dissipated in the active FPZ. The stress drop, until limiting value, increased with the width of the active FPZ. Finally, a relationship between the surface energy and the nonlocal internal length was established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bažant, Z.P., Vořechovský, M., Novák, D.: Asymptotic prediction of energetic-statistical size effect from deterministic finite-element solutions. J. Eng. Mech. 133, 153–162 (2007). https://doi.org/10.1061/(ASCE)0733-9399(2007)133:2(153)

    Article  Google Scholar 

  2. Manouchehrian, A., Cai, M.: Influence of material heterogeneity on failure intensity in unstable rock failure. Comput. Geotech. 71, 237–246 (2016). https://doi.org/10.1016/j.compgeo.2015.10.004

    Article  Google Scholar 

  3. Gustafsson, P.-J., Niskanen, K.: Paper as an engineering material. In: Niskanen, K. (ed.) Mechanics of Paper Products, pp. 5–26 (2012)

  4. Fakoor, M., Shokrollahi, M.S.: A new approach for investigation of mode II fracture toughness in orthotropic materials. Acta Mech. 229, 3537–3556 (2018). https://doi.org/10.1590/1679-78253979

    Article  Google Scholar 

  5. Bažant, Z.P.: Nonlocal damage theory based on micromechanics of crack interactions. J. Eng. Mech. 120, 593–617 (1994)

    Article  Google Scholar 

  6. Hillerborg, A., Modéer, M., Petersson, P.: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res. 6, 773–782 (1976). https://doi.org/10.1016/0008-8846(76)90007-7

    Article  Google Scholar 

  7. Wells, G.N., Sluys, L.J.: A new method for modelling cohesive cracks using finite elements. Int. J. Numer. Methods Eng. 50, 2667–2682 (2001). https://doi.org/10.1002/nme.143

    Article  MATH  Google Scholar 

  8. Mühlhaus, H.-B., Aifantis, E.C.: A variational principle for gradient plasticity. Int. J. Solids Struct. 28, 845–857 (1991). https://doi.org/10.1016/0020-7683(91)90004-Y

    Article  MathSciNet  MATH  Google Scholar 

  9. De Borst, R., Mühlhaus, H.-B.: Gradient-dependent plasticity: formulation and algorithmic aspects. Int. J. Numer. Methods Eng. 35, 521–539 (1992)

    Article  MATH  Google Scholar 

  10. Pijaudier-Cabot, G., Bažant, Z.P.: Non local damage theory. J. Eng. Mech. 113, 1512–1533 (1987). https://doi.org/10.1061/(ASCE)0733-9399(1987)113:10(1512)

    Article  Google Scholar 

  11. Geers, M.G.D., Peerlings, R.H.J., Brekelmans, W.A.M.: Phenomenological nonlocal approaches based on implicit gradient-enhanced damage. Acta Mech. 144, 1–15 (2000)

    Article  MATH  Google Scholar 

  12. Pijaudier-Cabot, G., Haidar, K., Dubé, J.: Nonlocal damage model with evolving internal length. Int. J. Numer. Anal. Methods Geomech. 28, 633–652 (2004)

    Article  MATH  Google Scholar 

  13. Krayani, A., Pijaudier-Cabot, G., Dufour, F.: Boundary effect on weight function in nonlocal damage model. Eng. Fract. Mech. 76, 2217–2231 (2009). https://doi.org/10.1016/j.engfracmech.2009.07.007

    Article  Google Scholar 

  14. Pijaudier-Cabot, G., Dufour, F.: Nonlocal damage model boundary and evolving boundary effects. Eur. J. Environ. Civ. Eng. 14, 729–749 (2010)

    Article  Google Scholar 

  15. Giry, C., Dufour, F., Mazars, J.: Stress-based nonlocal damage model. Int. J. Solids Struct. 48, 3431–3443 (2011). https://doi.org/10.1016/j.ijsolstr.2011.08.012

    Article  Google Scholar 

  16. Eringen, A.C., Speziale, C.G., Kim, B.S.: Crack-tip problem in non-local elasticity. J. Mech. Phys. Solids 25, 339–355 (1977). https://doi.org/10.1016/0022-5096(77)90002-3

    Article  MathSciNet  MATH  Google Scholar 

  17. Simone, A., Askes, H., Sluys, L.J.: Incorrect initiation and propagation of failure in non-local and gradient-enhanced media. Int. J. Solids Struct. 41, 351–363 (2004). https://doi.org/10.1016/j.ijsolstr.2003.09.020

    Article  MATH  Google Scholar 

  18. Bažant, Z.P., Pijaudier-Cabot, G.: Measurement of characteristic length of nonlocal continuum. J. Eng. Mech. 115, 755–767 (1989)

    Article  Google Scholar 

  19. Landis, E.N.: Micro-macro fracture relationships and acoustic emissions in concrete. Constr. Build. Mater. 13, 65–72 (1999). https://doi.org/10.1016/S0950-0618(99)00009-4

    Article  Google Scholar 

  20. Grégoire, D., Verdon, L., Lefort, V., Grassl, P., Saliba, J., Regoin, J.-P., Loukili, A., Pijaudier-Cabot, G.: Mesoscale analysis of failure in quasi-brittle materials: comparison between lattice model and acoustic emission data. Int. J. Numer. Anal. Methods Geomech. 39, 1639–1664 (2015). https://doi.org/10.1016/j.solener.2019.02.027

    Article  Google Scholar 

  21. Alam, S.Y., Saliba, J., Loukili, A.: Fracture examination in concrete through combined digital image correlation and acoustic emission techniques. Constr. Build. Mater. 69, 232–242 (2014). https://doi.org/10.1016/j.conbuildmat.2014.07.044

    Article  Google Scholar 

  22. Zietlow, W.K., Labuz, J.F.: Measurement of the intrinsic process zone in rock using acoustic emission. Int. J. Rock Mech. Min. Sci. 35, 291–299 (1998). https://doi.org/10.1016/S0148-9062(97)00323-9

    Article  Google Scholar 

  23. Le Bellégo, C., Dubé, J., Pijaudier-cabot, G., Gérard, B.: Calibration of nonlocal damage model from size effect tests. Eur. J. Mech. 22, 33–46 (2003)

    Article  MATH  Google Scholar 

  24. Du Plessis, A., Boshoff, W.P.: A review of X-ray computed tomography of concrete and asphalt construction materials. Constr. Build. Mater. 199, 637–651 (2019). https://doi.org/10.1016/j.conbuildmat.2018.12.049

    Article  Google Scholar 

  25. Sampson, W.W.: The structural characterization of fibre networks in papermaking processes—a review. In: 11th Fundamental Resource Symposium, pp. 1205–1288 (2001)

  26. Wong, L., Kortschot, M.T., Dodson, C.T.J.: Effect of formation on local strain fields and fracture of paper. J. Pulp Pap. Sci. 22, 213–219 (1996)

    Google Scholar 

  27. Alzweighi, M., Mansour, R., Lahti, J., Hirn, U., Kulachenko, A.: The influence of structural variations on the constitutive response and strain variations in thin fibrous materials. Acta Mater. 203, 116–460 (2021). https://doi.org/10.1016/j.actamat.2020.11.003

    Article  Google Scholar 

  28. Villette, F., Rolland du Roscoat, S., Dufour, F., Bloch, J.-F., Baroth, J., Carré, B.: Toward the link between structural and mechanical properties of fiber aggregates in paper materials. J. Mater. Sci. 57, 7587–7599 (2022). https://doi.org/10.1007/s10853-022-07098-8

    Article  Google Scholar 

  29. Kettunen, H., Niskanen, K.: Microscopic damage in paper. Part I: method of analysis. TAPPI. 83, 1–8 (2000)

  30. Niskanen, K., Kettunen, H., Yu, Y.: Damage width: a measure of the size of fracture process zone. In: Sci. Papermak. 12th Fundamental Resource Symposium, vol. 2, pp. 1467–1482 (2001)

  31. Isaksson, P., Hagglund, R.: Acoustic emission assisted fracture zone analysis of cellulose fibre materials. J. Compos. Mater. 47, 2865–2874 (2012). https://doi.org/10.1177/0021998312459781

    Article  Google Scholar 

  32. Isaksson, P., Dumont, P.J.J., Rolland du Roscoat, S.: Crack growth in planar elastic fiber materials. Int. J. Solids Struct. 49, 1900–1907 (2012). https://doi.org/10.1016/j.ijsolstr.2012.03.037

    Article  Google Scholar 

  33. Isaksson, P., Hägglund, R., Gradin, P.: Continuum damage mechanics applied to paper. Int. J. Solids Struct. 41, 4731–4755 (2004). https://doi.org/10.1016/j.ijsolstr.2004.02.043

    Article  MATH  Google Scholar 

  34. Isaksson, P., Hägglund, R.: Structural effects on deformation and fracture of random fiber networks and consequences on continuum models. Int. J. Solids Struct. 46, 2320–2329 (2009). https://doi.org/10.1016/j.ijsolstr.2009.01.027

    Article  MATH  Google Scholar 

  35. Krasnoshlyk, V., Rolland du Roscoat, S., Dumont, P.J.J., Isaksson, P.: Influence of the local mass density variation on the fracture behavior of fiber network materials. Int. J. Solids Struct. 138, 236–244 (2018). https://doi.org/10.1016/j.ijsolstr.2018.01.016

    Article  Google Scholar 

  36. Lemaitre, J.: Evaluation of dissipation and damage in metals submitted to dynamic loading (1971)

  37. Mazars, J.: A description of micro- and macroscale damage of concrete structures. Eng. Fract. Mech. 25, 729–737 (1986). https://doi.org/10.1016/0013-7944(86)90036-6

    Article  Google Scholar 

  38. Cast3m: Finite element code developed by the CEA, (french atomic energy commission) http://www-cast3m.cea.fr/

  39. Appalanaidu, Y., Roy, A., Gupta, S.: 3-D stochastic finite elements for thermal creep analysis of piping structures with spatial material inhomogeneities. Acta Mech. 228, 3039–3062 (2017). https://doi.org/10.1007/s00707-017-1865-9

    Article  MathSciNet  MATH  Google Scholar 

  40. Norman, B., Wahren, D.: A comprehensive method for the description of mass distribution in sheets and flocculation and turbulence in suspensions. Sven. Papperstidng. 75, 807–818 (1972)

    Google Scholar 

  41. Matheron, G.: Variables régionalisées et leur estimation. Masson (1965)

  42. Villette, F.: Damage of heterogeneous media: paper as a model material. Ph.D Thesis, Univ. Grenoble Alpes (2020)

  43. Matheron, G.: The intrinsic random functions and their applications. Appl. Probab. Trust 5, 439–468 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  44. Doube, M., Kłosowski, M.M., Arganda-carreras, I., Fabrice, P.: BoneJ : free and extensible bone image analysis in ImageJ. Bone 47, 1076–1079 (2010). https://doi.org/10.1016/j.bone.2010.08.023.BoneJ

    Article  Google Scholar 

  45. Hagman, A., Nygårds, M.: Thermographical analysis of paper during tensile testing and comparison to digital image correlation. Exp. Mech. 57, 325–339 (2017). https://doi.org/10.1007/s11340-016-0240-4

    Article  Google Scholar 

  46. Rosti, J., Koivisto, J., Alava, M.: Statistics of acoustic emission in paper fracture: precursors and criticality. J. Stat. Mech. Theory Exp. 2, P02016 (2010). https://doi.org/10.1088/1742-5468/2010/02/P02016

    Article  Google Scholar 

  47. Villette, F., Baroth, J., Dufour, F., Bloch, J.-F., Rolland du Roscoat, S.: Influence of material heterogeneities on crack propagation statistics using a fiber bundle model. Int. J. Fract. 221, 87–100 (2020). https://doi.org/10.1007/s10704-019-00409-2

    Article  Google Scholar 

Download references

Acknowledgements

Laboratoire 3SR is part of the LabEx Tec 21 (Investissements d'Avenir—Grant agreement No. ANR-11-LABX-0030) and of the PolyNat Carnot Institute (Investissements d'Avenir—Grant agreement No. ANR-16-CARN-0025-01).

Funding

No additional funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Dufour.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villette, F., Dufour, F., Baroth, J. et al. Interplay between structural scales and fracture process zone: experimental and numerical analysis on paper as a model material. Acta Mech 234, 4197–4215 (2023). https://doi.org/10.1007/s00707-023-03576-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03576-5

Navigation