Skip to main content
Log in

3-D stochastic finite elements for thermal creep analysis of piping structures with spatial material inhomogeneities

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A stochastic finite element-based methodology is developed for creep damage assessment in pipings carrying high-temperature fluids. The material properties are assumed to be spatially randomly inhomogeneous and are modelled as 3-D non-Gaussian fields. A spectral-based approach for random field discretization that preserves exactly the non-Gaussian characteristics is used in developing the stochastic finite element model. The meshing used in random field discretization is distinct from FE meshing, depends on the correlation characteristics of the random fields and is computationally efficient. The methodology enables estimating the failure probability and the most likely regions of failure in a section of a circular pipe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Woo, C.W., Li, D.L.: Statistical analysis of material damage with changing internal structure. Eng. Frac. Mech. 45, 245–254 (1993)

    Article  Google Scholar 

  2. Der Kiuregian, A., Ke, J.B.: The stochastic finite element method in structural reliability. Prob. Eng. Mech. 3, 83–91 (1988)

    Article  Google Scholar 

  3. Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Springer, London (1991)

    Book  MATH  Google Scholar 

  4. Kleiber, M., Hien, T.D.: The Stochastic Finite Element Method: Basic Perturbation Technique and Computer Implementation. Wiley, New York (1992)

    MATH  Google Scholar 

  5. Manohar, C.S., Ibrahim, R.A.: Progress in structural dynamics with stochastic parameter variations. App. Mech. Rev. 52, 177–197 (1999)

    Article  Google Scholar 

  6. Haldar, A., Mahadevan, S.: Reliability Assessment Using Stochastic Finite Element Analysis. Wiley, New York (2000)

    Google Scholar 

  7. Sudret, B., Der Kiureghian, A.: Comparison of finite element reliability methods. Prob. Eng. Mech. 17, 337–348 (2002)

    Article  Google Scholar 

  8. Xiu, D.: Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton University Press, Princeton (2010)

    MATH  Google Scholar 

  9. Kaminski, M.: The Stochastic Perturbation Method for Computational Mechanics. Wiley, Chichester (2013)

    Book  MATH  Google Scholar 

  10. Li, C.-C., Der Kiureghian, A.: Optimal discretization of random fields. J. Eng. Mech. ASCE 119, 1136–1154 (1993)

    Article  Google Scholar 

  11. Gupta, S., Manohar, C.S.: Dynamic stiffness method for circular stochastic Timoshenko beams: response variability and reliability analysis. J. Sound Vib. 253, 1051–1085 (2002)

    Article  Google Scholar 

  12. Sasikumar, P., Suresh, R., Gupta, S.: Stochastic finite elements of layered composite beams with spatially varying non-Gaussian inhomogeneities. Acta Mech. 225, 1503–1522 (2014)

    Article  MATH  Google Scholar 

  13. Boyle, J.T., Spence, J.: Stress Analysis for Creep. Butterworths Co., London (1983)

    Google Scholar 

  14. Kachanov, L.M.: Introduction to Continuum Damage Mechanics. Martinus Nijhoff, Leiden (1986)

    Book  MATH  Google Scholar 

  15. Penny, R.K., Marriot, D.L.: Design of Creep. McGraw-Hill Book Co., London (1980)

    Google Scholar 

  16. Zhou, C., Tu, S.: A stochastic computation model for the creep damage of furnace tube. Int. J. Press. Vessels Pip. 78, 617–625 (2001)

    Article  Google Scholar 

  17. Xiu, D., Karniadakis, G.E.: The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24, 619–644 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grigoriu, M.: Crossings of non-Gaussian translation processes. J. Eng. Mech. ASCE 110, 610–620 (1984)

    Article  Google Scholar 

  19. Der Kiureghian, A., Liu, P.L.: Structural reliability under incomplete probability information. J. Eng. Mech. ASCE 112, 85–104 (1986)

    Article  Google Scholar 

  20. Wiiteven, J.A.S., Sarkar, S., Bijl, H.: Modeling physical uncertainties in dynamic stall induced fluid-structure interaction of turbine blades using arbitrary polynomial chaos. Comput. Struct. 85, 866–878 (2007)

    Article  Google Scholar 

  21. Das, S., Ghanem, R., Finette, S.: Polynomial chaos representation of spatio-temporal random fields from experimental measurements. J. Comput. Phys. 228, 8726–8751 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayan Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Appalanaidu, Y., Roy, A. & Gupta, S. 3-D stochastic finite elements for thermal creep analysis of piping structures with spatial material inhomogeneities. Acta Mech 228, 3039–3062 (2017). https://doi.org/10.1007/s00707-017-1865-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1865-9

Navigation