Skip to main content
Log in

Phenomenological nonlocal approaches based on implicit gradient-enhanced damage

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The present paper focusses on five phenomenological approaches in gradient-enhanced damage, several of which have been proposed in the literature to simulate material degradation. These different gradient-damage based nonlocal models are examined with respect to their ability to describe crack initiation and crack propagation. The models are applied to identical mechanical benchmark tests, where the material damage evolution law is taken as good as possible equal for each model. Interesting differences between the different models arise, and it is shown that care must be taken in the interpretation and application of these models. One-dimensional results cannot be extrapolated in a straightforward fashion to two dimensions, and the physical relevance of some results is in some cases debatable. Furthermore, it is shown that the response of some models is strongly influenced by small differences in the applied damage evolution law. A discussion is made on the use of two different types of such evolution laws, which are frequently applied in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ožbolt, J., Bažant, A. P.: Numerical smeared fracture analysis: nonlocal microcrack interaction approach. Int. J. Numer. Meth. Engng39, 635–661 (1996).

    Google Scholar 

  2. Drugan, W. J., Willis, J. R.: A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. J. Mech. Phys. Solids44, 497–524 (1996).

    Google Scholar 

  3. Blechman, I.: Brittle solid under compression. Part I: Gradient mechanisms of microcracking. Int. J. Solids Structures34, 2563–2582 (1997).

    Google Scholar 

  4. Tvergaard, V., Needleman, A.: Nonlocal effects on localization in a void-sheet. Int. J. Solids Structures34, 2221–2238 (1997).

    Google Scholar 

  5. Eringen, A. C.: A unified theory of thermomechanical meterials. Int. J. Engng Sci.4, 179–202 (1966).

    Google Scholar 

  6. Maugin, G. A.: Nonlocal theories of gradient-type theories: a matter of convenience? Arch. Mech.31, 15–26 (1979).

    Google Scholar 

  7. Delaplace, A., Pijaudier-Cabot, G., Roux, S.: Progressive damage in discrete models and consequences on continuum modelling. J. Mech. Phys. Solids44, 99–136 (1996).

    Google Scholar 

  8. Geers, M. G. D., de Borst, R., Brekelmans, W. A. M., Peerlings, R. H. J.: Validation and internal length scale determination for a gradient damage model: Application to short glass-fibre-reinforced polypropylene. Int. J. Solids Sructures36, 2557–2583 (1998).

    Google Scholar 

  9. Geers, M. G. D., de Borst, R., Peijs, T.: Mixed numerical-experimental identification of nonlocal characteristics of random fibre reinforced composites. Composites Sci. Technology59, 1569–1578 (1999).

    Google Scholar 

  10. Peerlings, R. H. J., Geers, M. G. D., de Borst, R., Brekelmans W. A. M.: A critical comparison of nonlocal and gradient-enhanced continua. Int. J. Solids Structures (forthcoming).

  11. Jirásek, M.: Nonlocal models for damage and fracture: comparison of approaches. Int. Journal Solids Structures35, 4133–4145 (1998).

    Google Scholar 

  12. Geers, M. G. D., de Borst, R., Brekelmans, W. A. M., Peerlings, R. H. J.: Strain-based transient-gradient damage model for failure analyses. Comp. Meth. Appl. Mech. Engng160, 133–154 (1998).

    Google Scholar 

  13. Peerlings, R. H. J., de Borst, R., Brekelmans, W. A. M., de Vree, J. H. P.: Gradient-enhanced damage for quasi-brittle materials. Int. J. Numer. Meth. Engng39, 3391–3403 (1996).

    Google Scholar 

  14. de Borst, R., Benallal, A., Heeres, O. M.: A gradient-enhanced damage approach to fracture. J. de Physique IV,6, 491–502 (1996).

    Google Scholar 

  15. Geers, M. G. D.: Experimental analysis and computational modelling of damage and fracture. PhD thesis, Eindhoven University of Technology, The Netherlands (1997).

    Google Scholar 

  16. Peerlings, R. H. J., de Borst, R., Brekelmans, W. A. M., Geers, M. G. D.: Gradient-enhanced damage modelling of concrete fracture. Mech. Cohesive-Frictional Mater.3, 323–342 (1998).

    Google Scholar 

  17. Geers, M. G. D., de Borst, R., Peerlings, R. H. J.: Damage and crack modeling in single-edge and double-edge notched concrete beams. Eng. Fract. Mech. (forthcoming).

  18. de Borst, R., Geers, M. G. D., Peerlings, R. H. J.: Computational damage mechanics. In: Computational fracture mechanics in concrete technology (Carpenteri, A., Aliabadi, M., eds.), chap. 2, pp. 33–69. WIT Press 1999.

  19. Bažant, Z. P., Pijaudier-Cabot, G.: Nonlocal continuum damage, localization instability and convergence. J. Appl. Mech.55, 287–293 (1988).

    Google Scholar 

  20. Frémond, M., Nedjar, B.: Damage, gradient of damage and principle of virtual power. Int. J. Solids Structures33, 1083–1103 (1996).

    Google Scholar 

  21. Mühlhaus, H. B., de Borst, R., Sluys, L. J., Pamin, J.: A thermodynamic theory for inhomogeneous damage evolution. In: Computer methods and advances in geomechanics (Siriwardane, H. J., Zaman, M. M., eds.), pp. 635–640. Rotterdam and Boston: Balkema 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geers, M.G.D., Peerlings, R.H.J., Brekelmans, W.A.M. et al. Phenomenological nonlocal approaches based on implicit gradient-enhanced damage. Acta Mechanica 144, 1–15 (2000). https://doi.org/10.1007/BF01181824

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01181824

Keywords

Navigation