Skip to main content
Log in

A semi-analytical model for dynamic analysis of thin plates with plate-type resonators

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A semi-analytical method is proposed for free and forced vibrations of a thin square binary material configuration plate containing circular plate-type resonators. The resonator embedded in the host plate consists of a rigid mass and a circular plate made of soft material. Based on the classical plate theory, the host plate and the resonator are modelled separately and then coupled by the condition of displacement compatibility. A set of local admissible functions is incorporated into the global admissible functions in the circular plate domain, to describe the non-smoothness and vibration localization of the displacement caused by the material difference between the host plate and the resonator. The resulting global admissible functions promote the capabilities of the Ritz method in predicting accurately the vibration characteristics of the plate with binary material configuration. The Ritz method with the constructed admissible functions is developed to extract frequencies and analytic mode functions of the plate under different boundary conditions. The plate subjected to a transverse harmonic excitation is discretized into a multi-degree-of-freedom system by the Lagrange approach with the analytic mode functions. The effects of boundary conditions, locations of the mass, and material properties on the vibration are explored. It is demonstrated that the mass location in the circular plate only affects the frequencies of the resonator and has almost no effect on the frequencies and the modes of global vibration, and the resonator with the appropriate material parameters reduces significantly the multi-mode plate vibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Askari, E., Jeong, K.H., Amabili, M.: A novel mathematical method to analyze the free vibration of eccentric annular plates. J. Sound Vib. 484, 115513 (2020). https://doi.org/10.1016/j.jsv.2020.115513

    Article  Google Scholar 

  2. Chen, Y.X., Li, F.L., Hao, Y.X.: Analysis of vibration and sound insulation characteristics of functionally graded sandwich plates. Compos. Struct. 249, 112515 (2020). https://doi.org/10.1016/j.compstruct.2020.112515

    Article  Google Scholar 

  3. Yeh, S.L., Harne, R.L.: Cut-out resonators for tuned vibration suppression of plates. Thin-Walled Struct. 167, 108200 (2021). https://doi.org/10.1016/j.tws.2021.108200

    Article  Google Scholar 

  4. Lu, S.F., Li, H.J., Zhang, W., Song, X.J.: Vibration reduction of FG-CNTR piezoelectric laminated composite cantilever plate under aerodynamic load using full-dimensional state observer. Eng. Struct. 255, 113942 (2022). https://doi.org/10.1016/j.engstruct.2022.113942

    Article  Google Scholar 

  5. Richiedei, D., Tamellin, I., Trevisani, A.: Beyond the tuned mass damper: a comparative study of passive approaches to vibration absorption through antiresonance assignment. Arch. Comput. Methods Eng. 29, 519–544 (2022). https://doi.org/10.1007/s11831-021-09583-w

    Article  MathSciNet  Google Scholar 

  6. Yang, F., Sedaghati, R., Esmailzadeh, E.: Vibration suppression of structures using tuned mass damper technology: a state-of-the-art review. JVC J. Vib. Control. 28, 812–836 (2022). https://doi.org/10.1177/1077546320984305

    Article  MathSciNet  Google Scholar 

  7. Huang, Y., Li, J., Chen, W., Bao, R.: Tunable bandgaps in soft phononic plates with spring-mass-like resonators. Int. J. Mech. Sci. 151, 300–313 (2019). https://doi.org/10.1016/j.ijmecsci.2018.11.029

    Article  Google Scholar 

  8. Gao, P., Climente, A., Sánchez-Dehesa, J., Wu, L.: Single-phase metamaterial plates for broadband vibration suppression at low frequencies. J. Sound Vib. 444, 108–126 (2019). https://doi.org/10.1016/j.jsv.2018.12.022

    Article  Google Scholar 

  9. Yeh, S.L., Harne, R.L.: Structurally-integrated resonators for broadband panel vibration suppression. Smart Mater. Struct. 29, 085010 (2020). https://doi.org/10.1088/1361-665X/ab9148

    Article  Google Scholar 

  10. Ma, F., Wang, C., Liu, C., Wu, J.H.: Structural designs, principles, and applications of thin-walled membrane and plate-type acoustic/elastic metamaterials. J. Appl. Phys. 129, 231103 (2021). https://doi.org/10.1063/5.0042132

    Article  Google Scholar 

  11. Liao, G., Luan, C., Wang, Z., Liu, J., Yao, X., Fu, J.: Acoustic metamaterials: a review of theories, structures, fabrication approaches, and applications. Adv. Mater. Technol. 6, 1–29 (2021). https://doi.org/10.1002/admt.202000787

    Article  Google Scholar 

  12. Yang, Z., Mei, J., Yang, M., Chan, N.H., Sheng, P.: Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 101, 1–4 (2008). https://doi.org/10.1103/PhysRevLett.101.204301

    Article  Google Scholar 

  13. Nouh, M., Aldraihem, O., Baz, A.: Wave propagation in metamaterial plates with periodic local resonances. J. Sound Vib. 341, 53–73 (2015). https://doi.org/10.1016/j.jsv.2014.12.030

    Article  Google Scholar 

  14. Zhou, G., Wu, J.H., Lu, K., Tian, X., Huang, W., Zhu, K.: Broadband low-frequency membrane-type acoustic metamaterials with multi-state anti-resonances. Appl. Acoust. 159, 107078 (2020). https://doi.org/10.1016/j.apacoust.2019.107078

    Article  Google Scholar 

  15. Naify, C.J., Chang, C.M., McKnight, G., Nutt, S.: Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials. J. Appl. Phys. 108, 114905 (2010). https://doi.org/10.1063/1.3514082

    Article  Google Scholar 

  16. Naify, C.J., Chang, C.M., McKnight, G., Nutt, S.: Transmission loss of membrane-type acoustic metamaterials with coaxial ring masses. J. Appl. Phys. 110, 124903 (2011). https://doi.org/10.1063/1.3665213

    Article  Google Scholar 

  17. Naify, C.J., Chang, C.M., McKnight, G., Scheulen, F., Nutt, S.: Membrane-type metamaterials: transmission loss of multi-celled arrays. J. Appl. Phys. 109, 104902 (2011). https://doi.org/10.1063/1.3583656

    Article  Google Scholar 

  18. Gao, C., Halim, D., Yi, X.: Study of bandgap property of a bilayer membrane-type metamaterial applied on a thin plate. Int. J. Mech. Sci. 184, 105708 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105708

    Article  Google Scholar 

  19. Ma, F., Cai, Y., Wu, J.H.: Ultralight plat-type vibration damper with designable working bandwidth and strong multi-peak suppression performance. J. Phys. D. Appl. Phys. 54, 055303 (2021). https://doi.org/10.1088/1361-6463/abc11a

    Article  Google Scholar 

  20. Xiao, W., Zeng, G.W., Cheng, Y.S.: Flexural vibration band gaps in a thin plate containing a periodic array of hemmed discs. Appl. Acoust. 69, 255–261 (2008). https://doi.org/10.1016/j.apacoust.2006.09.003

    Article  Google Scholar 

  21. Hsu, J.C., Wu, T.T.: Lamb waves in binary locally resonant phononic plates with two-dimensional lattices. Appl. Phys. Lett. 90, 201904 (2007). https://doi.org/10.1063/1.2739369

    Article  Google Scholar 

  22. Dal Poggetto, V.F., Serpa, A.L.: Flexural wave band gaps in a ternary periodic metamaterial plate using the plane wave expansion method. J. Sound Vib. 495, 115909 (2021). https://doi.org/10.1016/j.jsv.2020.115909

    Article  Google Scholar 

  23. Langfeldt, F., Gleine, W., Von Estorff, O.: Analytical model for low-frequency transmission loss calculation of membranes loaded with arbitrarily shaped masses. J. Sound Vib. 349, 315–329 (2015). https://doi.org/10.1016/j.jsv.2015.03.037

    Article  Google Scholar 

  24. Li, J., Shi, Y., Jiang, R., Zhang, Z., Huang, Q.: Acoustic insulation mechanism of membrane-type acoustic metamaterials loaded with arbitrarily shaped mass blocks of variable surface density. Materials (Basel) 15, 1556 (2022). https://doi.org/10.3390/ma15041556

    Article  Google Scholar 

  25. Cheng, C.Z., Yao, S.L., Han, Z.L., Recho, N., Niu, Z.R.: Evaluation of the singularity exponents and characteristic angular functions for piezoelectric V-notches under in plane and out of plane conditions. Theor. Appl. Fract. Mech. 76, 50–59 (2015). https://doi.org/10.1016/j.tafmec.2015.01.001

    Article  Google Scholar 

  26. Cheng, C.Z., Yao, S.L., Sun, J.L., Niu, Z.R.: Singularity characteristic analysis for a V-notch in angularly heterogeneous moderately thick plate. Int. J. Mech. Sci. 115–116, 215–225 (2016). https://doi.org/10.1016/j.ijmecsci.2016.07.001

    Article  Google Scholar 

  27. Moreno-García, P., dos Santos, J.V.A., Lopes, H.: A review and study on ritz method admissible functions with emphasis on buckling and free vibration of isotropic and anisotropic beams and plates. Arch. Comput. Methods Eng. 25, 785–815 (2018). https://doi.org/10.1007/s11831-017-9214-7

    Article  MathSciNet  MATH  Google Scholar 

  28. Kumar, Y.: The Rayleigh–Ritz method for linear dynamic, static and buckling behavior of beams, shells and plates: a literature review. JVC J. Vib. Control 24, 1205–1227 (2018). https://doi.org/10.1177/1077546317694724

    Article  MathSciNet  MATH  Google Scholar 

  29. Gozum, M.M., Serhat, G., Basdogan, I.: A semi-analytical model for dynamic analysis of non-uniform plates. Appl. Math. Model. 76, 883–899 (2019). https://doi.org/10.1016/j.apm.2019.07.013

    Article  MathSciNet  MATH  Google Scholar 

  30. Gozum, M.M., Aghakhani, A., Serhat, G., Basdogan, I.: Electroelastic modeling of thin-laminated composite plates with surface-bonded piezo-patches using Rayleigh–Ritz method. J. Intell. Mater. Syst. Struct. 29, 2192–2205 (2018). https://doi.org/10.1177/1045389X18758189

    Article  Google Scholar 

  31. Gao, C., Pang, F., Li, H., Jia, D., Tang, Y.: Steady and transient vibration analysis of uniform and stepped annular/circular plates based on FSDT. Acta Mech. 233, 1061–1082 (2022). https://doi.org/10.1007/s00707-022-03157-y

    Article  MathSciNet  MATH  Google Scholar 

  32. Chan, Y.J., Tai, C.Y.: Free vibration of stepped rectangular Mindlin plates with non-Lévy boundary conditions. Int. J. Mech. Sci. 144, 668–678 (2018). https://doi.org/10.1016/j.ijmecsci.2018.05.052

    Article  Google Scholar 

  33. Deng, J., Guasch, O., Zheng, L., Song, T., Cao, Y.: Semi-analytical model of an acoustic black hole piezoelectric bimorph cantilever for energy harvesting. J. Sound Vib. 494, 115790 (2021). https://doi.org/10.1016/j.jsv.2020.115790

    Article  Google Scholar 

  34. Blesa Gracia, J., Rammerstorfer, F.G.: Increase in buckling loads of plates by introduction of cutouts. Acta Mech. 230, 2873–2889 (2019). https://doi.org/10.1007/s00707-019-02435-6

    Article  MathSciNet  MATH  Google Scholar 

  35. Yang, Y., Cheng, C., Niu, Z., Hu, Z.: Free vibration analysis for V-notched Mindlin plates with free or clamped radial edges. Acta Mech. 233, 2271–2285 (2022). https://doi.org/10.1007/s00707-022-03211-9

    Article  MathSciNet  MATH  Google Scholar 

  36. Xue, J., Wang, Y.: Free vibration analysis of a flat stiffened plate with side crack through the Ritz method. Arch. Appl. Mech. 89, 2089–2102 (2019). https://doi.org/10.1007/s00419-019-01565-6

    Article  Google Scholar 

  37. Xue, J., Wang, Y., Chen, L.: Buckling and free vibration of a side-cracked Mindlin plate under axial in-plane load. Arch. Appl. Mech. 90, 1811–1827 (2020). https://doi.org/10.1007/s00419-020-01698-z

    Article  Google Scholar 

  38. Milazzo, A.: Free vibrations analysis of cracked variable stiffness composite plates by the eXtended Ritz method. Mech. Adv. Mater. Struct. 0, 1–17 (2022). https://doi.org/10.1080/15376494.2022.2038742

    Article  Google Scholar 

  39. Song, Y., Xue, K., Li, Q.: A solution method for free vibration of intact and cracked polygonal thin plates using the Ritz method and Jacobi polynomials. J. Sound Vib. 519, 116578 (2022). https://doi.org/10.1016/j.jsv.2021.116578

    Article  Google Scholar 

  40. Huang, C.S., Lee, H.T., Li, P.Y., Chang, M.J.: Three-dimensional free vibration analyses of preloaded cracked plates of functionally graded materials via the mls-ritz method. Materials 14, 7712 (2021). https://doi.org/10.3390/ma14247712

    Article  Google Scholar 

  41. Liew, K.M., Hung, K.C., Lim, M.K.: A solution method for analysis of cracked plates under vibration. Eng. Fract. Mech. 48, 393–404 (1994). https://doi.org/10.1016/0013-7944(94)90130-9

    Article  Google Scholar 

  42. Kharazi, M., Ovesy, H.R., Taghizadeh, M.: Buckling of the composite laminates containing through-the-width delaminations using different plate theories. Compos. Struct. 92, 1176–1183 (2010). https://doi.org/10.1016/j.compstruct.2009.10.019

    Article  Google Scholar 

  43. Cheng, C.Z., Zhou, W., Niu, Z.R., Recho, N.: Stress singularity analysis for orthotropic V-notches in the generalised plane strain state. Fatigue Fract. Eng. Mater. Struct. 38, 881–896 (2015). https://doi.org/10.1111/ffe.12282

    Article  Google Scholar 

  44. Zhou, D., Cheung, Y.K., Au, F.T.K., Lo, S.H.: Three-dimensional vibration analysis of thick rectangular plates using Chebyshev polynomial and Ritz method. Int. J. Solids Struct. 39, 6339–6353 (2002). https://doi.org/10.1016/S0020-7683(02)00460-2

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Project No. 11872159, 12132002, and 62188101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Qun Chen.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this manuscript. This manuscript has not been published previously and not under consideration for publication elsewhere, in whole or in part.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, J., Chen, LQ. A semi-analytical model for dynamic analysis of thin plates with plate-type resonators. Acta Mech 234, 2315–2329 (2023). https://doi.org/10.1007/s00707-023-03496-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03496-4

Navigation