Skip to main content

Advertisement

Log in

Computational Modelling and Analysis of Effect of Viscoelastic Materials on Damping and Vibrational Behaviors of Composite Structures—An Extensive Review

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

This article reported an extensive review of computational modelling and analysis on damping and vibrational behaviors of viscoelastic structures, including experimental techniques. viscoelastic materials have emerged as an effective technology for enhancing damping characteristics in composite structures because of their ability to damp vibration and the ability to conserve the geometry of the material after deformation. In structural design viscoelastic material is never employed alone, it is always adhered to the thin-walled structure to form a damping layer of different structural configurations such as sandwich structure configurations and reinforced configurations. It is worth mentioning that viscoelastic materials are quite frequency-dependent meaning that the vibrational properties keep varying with the excitation frequency, accordingly, yielding complex natural frequencies of vibration. This paper provides a primary discussion on the basic forming principles of linear viscoelastic material providing comparisons of different viscoelastic material mathematical models, and applications of viscoelastic material including their effects on composite structure damping and vibrational behaviors. Moreover, different computational methods for dynamic behaviors of viscoelastic sandwich structures including analytical method, finite element method, and mixed method were assessed to provide insights into the limitations of each approach. The drawbacks of each calculation theory for various traditional and recent configurations are systematically presented in engineering structures containing viscoelastic followed by a detailed description and comparison of different modeling methods, their applicability, and their respective comparisons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Fang Y, Xia J (2022) Highly stretchable, soft, and clear viscoelastic film with good recoverability for flexible display. ACS Appl Mater Interfaces 14:38398–38408. https://doi.org/10.1021/ACSAMI.2C11141

    Article  CAS  PubMed  Google Scholar 

  2. Kim SY, Kim SH, Oh HJ et al (2010) Residual stress and viscoelastic deformation of film insert molded automotive parts. J Appl Polym Sci 118:2530–2540. https://doi.org/10.1002/APP.32371

    Article  CAS  Google Scholar 

  3. Cunha-Filho AG, De Lima AMG, Donadon MV, Leão LS (2016) Flutter suppression of plates subjected to supersonic flow using passive constrained viscoelastic layers and Golla–Hughes–McTavish method. Aerosp Sci Technol 52:70–80. https://doi.org/10.1016/J.AST.2016.02.022

    Article  Google Scholar 

  4. Shahali P, Haddadpour H, Kordkheili SAH (2020) Nonlinear dynamics of viscoelastic pipes conveying fluid placed within a uniform external cross flow. Appl Ocean Res. https://doi.org/10.1016/J.APOR.2019.101970

    Article  Google Scholar 

  5. Hock K, Langlie C (1991) Calculation of shafts in deposits with regard to imperfections, buckling and visco-elastic material properties. Comput Struct 40:329–337. https://doi.org/10.1016/0045-7949(91)90358-S

    Article  Google Scholar 

  6. Lin JC (2010) Characterization and numerical evaluation of vibration on elastic-viscoelastic sandwich structures. Compos Struct 92:669–675. https://doi.org/10.1016/J.COMPSTRUCT.2009.09.025

    Article  Google Scholar 

  7. Lu P, Liu XD, Ma X, Huang WB (2012) Analysis of damping characteristics for sandwich beams with a polyurea viscoelastic layer. Adv Mater Res 374–377:764–769. https://doi.org/10.4028/www.scientific.net/AMR.374-377.764

    Article  CAS  Google Scholar 

  8. Elkhaldi I, Charpentier I, Daya EM (2012) A gradient method for viscoelastic behaviour identification of damped sandwich structures. Compt Rend Mec 340:619–623. https://doi.org/10.1016/j.crme.2012.05.001

    Article  ADS  Google Scholar 

  9. De Lima AMG, Guaraldo-Neto B, Sales TP, Rade DA (2014) A time-domain modeling of systems containing viscoelastic materials and shape memory alloys as applied to the problem of vibration attenuation. Eng Struct 68:85–95. https://doi.org/10.1016/J.ENGSTRUCT.2014.02.035

    Article  Google Scholar 

  10. Patil R, Joladarashi S, Kadoli R (2022) Bending and vibration studies of FG porous sandwich beam with viscoelastic boundary conditions: FE approach. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2022.2079030

    Article  Google Scholar 

  11. Mahmoudkhani S, Haddadpour H (2013) Nonlinear vibration of viscoelastic sandwich plates under narrow-band random excitations. Nonlinear Dyn 74:165–188. https://doi.org/10.1007/s11071-013-0956-y

    Article  MathSciNet  Google Scholar 

  12. Sheng M, Guo Z, Qin Q, He Y (2018) Vibration characteristics of a sandwich plate with viscoelastic periodic cores. Compos Struct 206:54–69. https://doi.org/10.1016/j.compstruct.2018.07.110

    Article  Google Scholar 

  13. Lewandowski R, Litewka P, Wielentejczyk P (2021) Free vibrations of laminate plates with viscoelastic layers using the refined zig-zag theory – Part 1. Theoretical background. Compos Struct. https://doi.org/10.1016/j.compstruct.2021.114547

    Article  Google Scholar 

  14. Litewka P, Lewandowski R, Wielentejczyk P (2021) Free vibrations of laminate plates with viscoelastic layers using the refined zig-zag theory—part 2. Numerical analysis. Compos Struct 278:114550. https://doi.org/10.1016/J.COMPSTRUCT.2021.114550

    Article  Google Scholar 

  15. Hu YC, Huang SC (2000) Frequency response and damping effect of three-layer thin shell with viscoelastic core. Comput Struct 76:577–591. https://doi.org/10.1016/S0045-7949(99)00182-0

    Article  Google Scholar 

  16. Boutyour EH, Daya EM, Azrar L, Potier-Ferry M (2006) An approximated harmonic balance method for nonlinear vibration of viscoelastic structures. J Eng Mater Technol 128:330–334. https://doi.org/10.1115/1.2204944

    Article  Google Scholar 

  17. Yang C, Jin G, Liu Z et al (2015) Vibration and damping analysis of thick sandwich cylindrical shells with a viscoelastic core under arbitrary boundary conditions. Int J Mech Sci 92:162–177. https://doi.org/10.1016/j.ijmecsci.2014.12.003

    Article  Google Scholar 

  18. Sahu NK, Biswal DK, Joseph SV, Mohanty SC (2020) Vibration and damping analysis of doubly curved viscoelastic-FGM sandwich shell structures using FOSDT. Structures 26:24–38. https://doi.org/10.1016/j.istruc.2020.04.007

    Article  Google Scholar 

  19. Chen Z, Gong Q, Zhao W, Gui H (2022) Analysis of viscoelastic damping effect on the underwater acoustic radiation of a ring-stiffened conical shell. Appl Sci. https://doi.org/10.3390/app12031566

    Article  Google Scholar 

  20. Marinković D, Rama G (2017) Co-rotational shell element for numerical analysis of laminated piezoelectric composite structures. Compos Part B Eng 125:144–156. https://doi.org/10.1016/J.COMPOSITESB.2017.05.061

    Article  Google Scholar 

  21. Seilsepour H, Zarastvand M, Talebitooti R (2022) Acoustic insulation characteristics of sandwich composite shell systems with double curvature: the effect of nature of viscoelastic core. JVC/Journal Vib Control. https://doi.org/10.1177/10775463211056758

    Article  Google Scholar 

  22. Marynowski K, Kapitaniak T (2002) Kelvin–Voigt versus Bürgers internal damping in modeling of axially moving viscoelastic web. Int J Non Linear Mech 37:1147–1161. https://doi.org/10.1016/S0020-7462(01)00142-1

    Article  Google Scholar 

  23. Fancello E, Ponthot JP, Stainier L (2006) A variational formulation of constitutive models and updates in non-linear finite viscoelasticity. Int J Numer Methods Eng 65:1831–1864. https://doi.org/10.1002/NME.1525

    Article  Google Scholar 

  24. Lewandowski R, Bartkowiak A, Maciejewski H (2012) Dynamic analysis of frames with viscoelastic dampers: a comparison of damper models. Struct Eng Mech 41:113–137. https://doi.org/10.12989/SEM.2012.41.1.113

    Article  Google Scholar 

  25. Ye K, Li L, Tang J (2003) Stochastic seismic response of structures with added viscoelastic dampers modeled by fractional derivative. Earthq Eng Eng Vib 2:133–139. https://doi.org/10.1007/BF02857545

    Article  Google Scholar 

  26. Xu H, Jiang X (2017) Creep constitutive models for viscoelastic materials based on fractional derivatives. Comput Math with Appl 73:1377–1384. https://doi.org/10.1016/J.CAMWA.2016.05.002

    Article  MathSciNet  Google Scholar 

  27. Di Paola M, Reddy JN, Ruocco E (2020) On the application of fractional calculus for the formulation of viscoelastic Reddy beam. Meccanica 55:1365–1378. https://doi.org/10.1007/s11012-020-01177-3

    Article  MathSciNet  Google Scholar 

  28. Sahoo SR (2020) Active damping of geometrically nonlinear vibrations of smart composite shells using elliptical smart constrained layer damping treatment with fractional derivative viscoelastic layer. J Intell Mater Syst Struct 31:587–611. https://doi.org/10.1177/1045389X19888800/ASSET/IMAGES/LARGE/10.1177_1045389X19888800-FIG2.JPEG

    Article  ADS  Google Scholar 

  29. Kusche S (2016) THE BOUNDARY ELEMENT METHOD FOR VISCOELASTIC MATERIAL APPLIED TO THE OBLIQUE IMPACT OF SPHERES. Facta Univ Ser Mech Eng 14:293–300. https://doi.org/10.22190/FUME1603293K

    Article  Google Scholar 

  30. Heise R (2015) Flash temperatures generated by friction of a viscoelastic body. Facta Univ Ser Mech Eng 13:47–65

    Google Scholar 

  31. McTavish DJ (2003) Shock response of a damped linear structure using GHM finite elements. In: Collecion of technical papers—AIAA/ASME/ASCE/AHS/ASC Structures, structural dynamics and materials conference, vol 3, pp 1681–1689. https://doi.org/10.2514/6.2003-1591

  32. Afshin M, Sadighi M, Shakeri M (2011) Vibration and damping analysis of cylindrical sandwich panels containing a viscoelastic flexible core. J Sandw Struct Mater 13:331–356. https://doi.org/10.1177/1099636210382313

    Article  Google Scholar 

  33. Martin LA, Inman DJ (2013) A novel viscoelastic material modulus function for modifying the Golla-Hughes-McTavish method. Int J Acoust Vib 18:102–108. https://doi.org/10.20855/IJAV.2013.18.3325

    Article  Google Scholar 

  34. Shi YM, Li ZF, Hua HX et al (2001) The modelling and vibration control of beams with active constrained layer damping. J Sound Vib 245:785–800. https://doi.org/10.1006/JSVI.2001.3614

    Article  ADS  Google Scholar 

  35. Huang Z, Wang X, Wu N et al (2019) A finite element model for the vibration analysis of sandwich beam with frequency-dependent viscoelastic material core. Materials (Basel). https://doi.org/10.3390/MA12203390

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bottoni M, Mazzotti C, Savoia M (2008) A finite element model for linear viscoelastic behaviour of pultruded thin-walled beams under general loadings. Int J Solids Struct 45:770–793. https://doi.org/10.1016/J.IJSOLSTR.2007.08.028

    Article  Google Scholar 

  37. Huang Z, Pan J, Yang Z et al (2021) Transverse vibration of viscoelastic sandwich structures: finite element modeling and experimental study. Materials (Basel). https://doi.org/10.3390/MA14247751

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang H, Thompson DG, Schoonover JR et al (2001) DMA-FTIR creep-recovery study of a poly(ester urethane) elastomer with molecular-level viscoelastic modeling. Macromolecules 34:7084–7090. https://doi.org/10.1021/MA001783B/ASSET/IMAGES/LARGE/MA001783BF00004.JPEG

    Article  CAS  ADS  Google Scholar 

  39. Lewandowski R, Przychodzki M (2018) Approximate method for temperature-dependent characteristics of structures with viscoelastic dampers. Arch Appl Mech 88:1695–1711. https://doi.org/10.1007/S00419-018-1394-6/FIGURES/7

    Article  Google Scholar 

  40. Xu Y, Xu ZD, Guo YQ et al (2023) Study on viscoelastic materials at micro scale pondering supramolecular interaction impacts with DMA tests and fractional derivative modeling. J Appl Polym Sci 140:e53660. https://doi.org/10.1002/APP.53660

    Article  CAS  Google Scholar 

  41. Xu ZD, Yang Y, Zhu YN, Ge T (2023) Experimental study and mathematical modeling of viscoelastic dampers with wider temperature range based on blended rubber matrix. J Build Eng 70:106414. https://doi.org/10.1016/J.JOBE.2023.106414

    Article  Google Scholar 

  42. Ercan N, Durmus A (2022) Structure–property relationships and constitutive viscoelastic behaviors of polyether-block-amide elastomers in melt and solid states. J Appl Polym Sci 139:e52458. https://doi.org/10.1002/APP.52458

    Article  CAS  Google Scholar 

  43. Müller-Pabel M, Rodríguez Agudo JA, Gude M (2022) Measuring and understanding cure-dependent viscoelastic properties of epoxy resin: a review. Polym Test 114:107701. https://doi.org/10.1016/J.POLYMERTESTING.2022.107701

    Article  Google Scholar 

  44. Mu Q (2022) Experimental data for creep and dynamic mechanical properties of polycarbonate and polycarbonate/acrylonitrile-butadiene-styrene. Data Briefs 42:108264. https://doi.org/10.1016/J.DIB.2022.108264

    Article  CAS  Google Scholar 

  45. You H, Lim HJ, Yun GJ (2022) A micromechanics-based time-domain viscoelastic constitutive model for particulate composites: theory and experimental validation. Adv Aircr Spacecr Sci 9:217–242. https://doi.org/10.12989/aas.2022.9.3.217

    Article  Google Scholar 

  46. Chantalakhana C, Stanway R (2001) ACTIVE CONSTRAINED LAYER DAMPING OF CLAMPED-CLAMPED PLATE VIBRATIONS. J Sound Vib 241:755–777. https://doi.org/10.1006/JSVI.2000.3317

    Article  ADS  Google Scholar 

  47. Milić P, Marinković D, Klinge S, Ćojbašić Ž (2023) Reissner–Mindlin based isogeometric finite element formulation for piezoelectric active laminated shells. Teh Vjesn 30:416–425. https://doi.org/10.17559/TV-20230128000280

    Article  Google Scholar 

  48. Milić P, Marinković D, Ćojbašić Ž (2023) Geometrically nonlinear analysis of piezoelectric active laminated shells by means of isogeometric FE FORMULATION. Facta Univ Ser Mech Eng. https://doi.org/10.22190/FUME050123059M

    Article  Google Scholar 

  49. Soni ML, Bogner FK (2012) Finite element vibration analysis of damped structures. AIAA J 20:700–707. https://doi.org/10.2514/3.51127

    Article  ADS  Google Scholar 

  50. Marinković D, Köppe H, Gabbert U (2006) Numerically efficient finite element formulation for modeling active composite laminates. Mech Adv Mater Struct 13:379–392. https://doi.org/10.1080/15376490600777624

    Article  Google Scholar 

  51. Kuchak AJT, Marinkovic D, Zehn M (2020) Finite element model updating—case study of a rail damper. Struct Eng Mech 73:27–29. https://doi.org/10.12989/SEM.2020.73.1.027

    Article  Google Scholar 

  52. Irazu L, Elejabarrieta MJ (2015) The influence of viscoelastic film thickness on the dynamic characteristics of thin sandwich structures. Compos Struct 134:421–428. https://doi.org/10.1016/J.COMPSTRUCT.2015.07.086

    Article  Google Scholar 

  53. Xing YX, Gao YS, Liu T et al (2023) Homogenization modeling and numerical simulation of piezolaminated lattice sandwich structures with viscoelastic material. Mater Today Commun 35:105682. https://doi.org/10.1016/J.MTCOMM.2023.105682

    Article  CAS  Google Scholar 

  54. Wang R, Shang J, Li X et al (2018) Vibration and damping characteristics of 3D printed Kagome lattice with viscoelastic material filling. Sci Rep. https://doi.org/10.1038/s41598-018-27963-4

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ditaranto RA, Blasingame W (1967) Composite damping of vibrating sandwich beams. J Manuf Sci Eng Trans ASME 89:633–638. https://doi.org/10.1115/1.3610124

    Article  Google Scholar 

  56. Park TH (1997) Vibration and damping characteristics of a beam with a partially sandwiched viscoelastic layer. J Adhes 61:97–122. https://doi.org/10.1080/00218469708010518

    Article  CAS  Google Scholar 

  57. Aenlle ML, Pelayo F (2013) Frequency response of laminated glass elements: analytical modeling and effective thickness. Appl Mech Rev. https://doi.org/10.1115/1.4023929/369924

    Article  Google Scholar 

  58. Galuppi L, Royer-Carfagni G (2012) Laminated beams with viscoelastic interlayer. Int J Solids Struct 49:2637–2645. https://doi.org/10.1016/J.IJSOLSTR.2012.05.028

    Article  CAS  Google Scholar 

  59. Guo H, Shang F, Tian X, He T (2020) An analytical study of transient thermo-viscoelastic responses of viscoelastic laminated sandwich composite structure for vibration control. Mech Adv Mater Struct 29:171–181. https://doi.org/10.1080/15376494.2020.1756544

    Article  Google Scholar 

  60. Sun CT, Sankar BV, Rao VS (1990) Damping and vibration control of unidirectional composite laminates using add-on viscoelastic materials. J Sound Vib 139:277–287. https://doi.org/10.1016/0022-460X(90)90888-7

    Article  ADS  Google Scholar 

  61. Araújo AL, Mota Soares CM, Mota Soares CA (2010) A viscoelastic sandwich finite element model for the analysis of passive, active and hybrid structures. Appl Compos Mater 17:529–542. https://doi.org/10.1007/S10443-010-9141-3

    Article  ADS  Google Scholar 

  62. Sairajan KK, Aglietti GS, Walker SJI (2014) Correlation of finite element models of multi-physics systems. J Sound Vib 333:4051–4070. https://doi.org/10.1016/J.JSV.2014.04.010

    Article  Google Scholar 

  63. Hernández WP, Castello DA, Ritto TG (2016) Uncertainty propagation analysis in laminated structures with viscoelastic core. Comput Struct 164:23–37. https://doi.org/10.1016/j.compstruc.2015.10.006

    Article  Google Scholar 

  64. Pradeep V, Ganesan N, Padmanabhan C (2006) Buckling and vibration behavior of a viscoelastic sandwich cylinder under thermal environment. Int J Comput Methods Eng Sci Mech 7:389–401. https://doi.org/10.1080/15502280600790413

    Article  Google Scholar 

  65. Eratli N, Argeso H, Çalim FF et al (2014) Dynamic analysis of linear viscoelastic cylindrical and conical helicoidal rods using the mixed FEM. J Sound Vib 333:3671–3690. https://doi.org/10.1016/J.JSV.2014.03.017

    Article  ADS  Google Scholar 

  66. Chen W, Liu S (2014) Topology optimization of microstructures of viscoelastic damping materials for a prescribed shear modulus. Int J Solids Struct 50:287–296. https://doi.org/10.1007/s00158-014-1049-3

    Article  MathSciNet  Google Scholar 

  67. Li H, Li Z, Safaei B et al (2021) Nonlinear vibration analysis of fiber metal laminated plates with multiple viscoelastic layers. Thin Walled Struct 168:108297. https://doi.org/10.1016/J.TWS.2021.108297

    Article  Google Scholar 

  68. Jalaei MH, Civalek Ö (2019) On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam. Int J Eng Sci 143:14–32. https://doi.org/10.1016/J.IJENGSCI.2019.06.013

    Article  MathSciNet  Google Scholar 

  69. Kang L, Sun C, Liu H, Liu B (2022) Determination of frequency-dependent shear modulus of viscoelastic layer via a constrained sandwich beam. Polymers (Basel). https://doi.org/10.3390/POLYM14183751

    Article  PubMed  PubMed Central  Google Scholar 

  70. Gupta A, Panda S, Reddy RS (2023) Damping capabilities of viscoelastic composites for active/passive constrained layer damping of the plate vibration: a comparative study. J Vib Eng Technol. https://doi.org/10.1007/S42417-023-00882-Z/TABLES/14

    Article  Google Scholar 

  71. Shahsavari D, Karami B, Tounsi A (2023) Wave propagation in a porous functionally graded curved viscoelastic nano-size beam. Waves Random Complex Media. https://doi.org/10.1080/17455030.2022.2164376

    Article  Google Scholar 

  72. Youzera H, Selim Saleh MM, Ghazwani MH et al (2023) Nonlinear damping and forced vibration analysis of sandwich functionally graded material beams with composite viscoelastic core layer. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2023.2229911

    Article  Google Scholar 

  73. Karmi Y, Tekili S, Khadri Y, Boumediri H (2023) Vibroacoustic analysis in the thermal environment of PCLD sandwich beams with frequency and temperature dependent viscoelastic cores. J Vib Eng Technol 1:3. https://doi.org/10.1007/s42417-023-01065-6

    Article  Google Scholar 

  74. Trindade MA, Benjeddou A (2002) Hybrid active–passive damping treatments using viscoelastic and piezoelectric materials: review and assessment. J Vib Control 8:699–745. https://doi.org/10.1177/1077546029186

    Article  Google Scholar 

  75. Hajianmaleki M, Qatu MS (2013) Vibrations of straight and curved composite beams: a review. Compos Struct 100:218–232. https://doi.org/10.1016/J.COMPSTRUCT.2013.01.001

    Article  Google Scholar 

  76. Zhou XQ, Yu DY, Shao XY et al (2016) Research and applications of viscoelastic vibration damping materials: a review. Compos Struct 136:460–480. https://doi.org/10.1016/J.COMPSTRUCT.2015.10.014

    Article  Google Scholar 

  77. Lewandowski R, Litewka P, Łasecka-Plura M, Pawlak ZM (2023) Dynamics of structures, frames, and plates with viscoelastic dampers or layers: a literature review. Build 13:2223. https://doi.org/10.3390/BUILDINGS13092223

    Article  Google Scholar 

  78. Menard KP (1999) Dynamic mechanical analysis: a practical introduction. CRC Press, Boca Raton

    Book  Google Scholar 

  79. Tschoegl NW (1980) Energy storage and dissipation in a linear viscoelastic material. In: International conference on plastic surgery and aesthetic surgery, vol 3, pp 697–702. https://doi.org/10.1007/978-3-642-73602-5_9/COVER

  80. Cooper RF (2002) Seismic wave attenuation: energy dissipation in viscoelastic crystalline solids. Rev Miner Geochem 51:253–290. https://doi.org/10.2138/GSRMG.51.1.253

    Article  CAS  Google Scholar 

  81. Sharma S, Shankar V, Joshi YM (2023) Viscoelasticity and rheological hysteresis. J Rheol (N Y) 67:139–155. https://doi.org/10.1122/8.0000462

    Article  CAS  ADS  Google Scholar 

  82. Gould PL, Feng Y (2018) Viscoelasticity. In: Introduction to linear Elasticity, pp 277–296. Springer, Cham. https://doi.org/10.1007/978-3-319-73885-7_10

  83. Sarwar W, Sarwar R (2019) Vibration control devices for building structures and installation approach: a review. Civ Environ Eng Rep 29:74–100. https://doi.org/10.2478/CEER-2019-0018

    Article  Google Scholar 

  84. Jiang F, Ding Z, Wu Y et al (2020) Energy dissipation characteristics and parameter identification of symmetrically coated damping structure of pipelines under different temperature environment. Symmetry 12:1283. https://doi.org/10.3390/SYM12081283

    Article  ADS  Google Scholar 

  85. Wang J, Sun D, Liu S, Zhang X (2017) Damping characteristics of viscoelastic damping structure under coupled condition. Math Comput Appl 22:27. https://doi.org/10.3390/MCA22010027

    Article  MathSciNet  Google Scholar 

  86. Gröhlich M, Lang A, Böswald M, Meier J (2021) Viscoelastic damping design—thermal impact on a constrained layer damping treatment. Mater Des. https://doi.org/10.1016/J.MATDES.2021.109885

    Article  Google Scholar 

  87. Xu Y, Xu Z, Guo Y et al (2021) Dynamic properties and energy dissipation study of sandwich viscoelastic damper considering temperature influence. Buildings 11:470. https://doi.org/10.3390/buildings11100470

    Article  Google Scholar 

  88. Burlon A, Alotta G, Di Paola M, Failla G (2021) An original perspective on variable-order fractional operators for viscoelastic materials. Meccanica 56:769–784. https://doi.org/10.1007/S11012-021-01316-4/FIGURES/15

    Article  MathSciNet  Google Scholar 

  89. Guo H, Chen Y, Tao J et al (2019) A viscoelastic constitutive relation for the rate-dependent mechanical behavior of rubber-like elastomers based on thermodynamic theory. Mater Des 178:107876. https://doi.org/10.1016/J.MATDES.2019.107876

    Article  CAS  Google Scholar 

  90. Tsenoglou CJ, Voyiatzis E, Gotsis AD (2006) Simple constitutive modelling of nonlinear viscoelasticity under general extension. J Nonnewton Fluid Mech 138:33–43. https://doi.org/10.1016/J.JNNFM.2006.05.002

    Article  CAS  Google Scholar 

  91. Lahellec N, Suquet P (2007) Effective behavior of linear viscoelastic composites: a time-integration approach. Int J Solids Struct 44:507–529. https://doi.org/10.1016/J.IJSOLSTR.2006.04.038

    Article  MathSciNet  Google Scholar 

  92. Muliana A, Rajagopal KR, Tscharnuter D (2015) A nonlinear integral model for describing responses of viscoelastic solids. Int J Solids Struct 58:146–156. https://doi.org/10.1016/J.IJSOLSTR.2014.12.026

    Article  CAS  Google Scholar 

  93. Ding H, Tang YQ, Chen LQ (2017) Frequencies of transverse vibration of an axially moving viscoelastic beam. JVC/Journal Vib Control 23:3504–3514. https://doi.org/10.1177/1077546315600311/ASSET/IMAGES/LARGE/10.1177_1077546315600311-FIG6.JPEG

    Article  MathSciNet  Google Scholar 

  94. Xu Y, Wei P (2023) Dynamic response of fractional-order viscoelastic high-order shear beam based on nonlocal strain gradient elasticity. Acta Mech Solida Sin 36:875–883. https://doi.org/10.1007/S10338-023-00428-6/FIGURES/5

    Article  Google Scholar 

  95. Ananthapadmanabhan S, Saravanan U (2023) Multi-field formulations for solving plane problems involving viscoelastic constitutive relations. Appl Eng Sci 13:100120. https://doi.org/10.1016/J.APPLES.2022.100120

    Article  Google Scholar 

  96. Roylance D (2001) Engineering viscoelasticity. Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  97. Sun C, Lu Y (1995) Vibration damping of structural elements. Prentice Hall PTR, Englewood Cliffs

    Google Scholar 

  98. Zener CM, Siegel S (1949) Elasticity and anelasticity of metals. J Phys Colloid Chem 53:1468–1468. https://doi.org/10.1021/j150474a017

    Article  Google Scholar 

  99. Wineman A (2020) Viscoelastic solids. In: Solid mechanics and its applications, vol 262. Springer, Cham, pp 81–123. https://doi.org/10.1007/978-3-030-31547-4_4

  100. Roland CM (2011) Viscoelastic behavior of rubbery materials. Oxford University Press, Oxford

    Book  Google Scholar 

  101. Duque-Daza C, Alexiadis A (2021) A simplified framework for modelling viscoelastic fluids in discrete multiphysics. ChemEngineering 5:61. https://doi.org/10.3390/CHEMENGINEERING5030061/S1

    Article  CAS  Google Scholar 

  102. Tanaka E, Van Eijden T (2003) Biomechanical behavior of the temporomandibular joint disc. Crit Rev Oral Biol Med 14:138–150. https://doi.org/10.1177/154411130301400207/ASSET/IMAGES/LARGE/10.1177_154411130301400207-FIG9.JPEG

    Article  PubMed  Google Scholar 

  103. Bonfanti A, Kaplan JL, Charras G, Kabla A (2020) Fractional viscoelastic models for power-law materials. Soft Matter 16:6002–6020. https://doi.org/10.1039/D0SM00354A

    Article  CAS  PubMed  ADS  Google Scholar 

  104. Eldred LB, Baker WP, Palazotto AN (1995) Kelvin–Voigt versus fractional derivative model as constitutive relations for viscoelastic materials. AIAA J 33:547–550. https://doi.org/10.2514/3.12471

    Article  CAS  ADS  Google Scholar 

  105. Padovan J, Guo Y (1988) General response of viscoelastic systems modelled by fractional operators. J Franklin Inst 325:247–275. https://doi.org/10.1016/0016-0032(88)90086-5

    Article  Google Scholar 

  106. Park SW (2001) Analytical modeling of viscoelastic dampers for structural and vibration control. Int J Solids Struct 38:8065–8092. https://doi.org/10.1016/S0020-7683(01)00026-9

    Article  Google Scholar 

  107. Manoharan S, Ramadoss G, Suresha B (2014) Investigate the fiber reinforcement effect on viscoelastic response and thermal stability of hybrid friction composites. Appl Mech Mater 591:132–136. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMM.591.132

    Article  Google Scholar 

  108. Banks HT, Hu S, Kenz ZR (2010) A brief review of elasticity and viscoelasticity. Adv Appl Math Mech 3:1–51

    Article  MathSciNet  Google Scholar 

  109. Wang D, de Boer G, Ghanbarzadeh A (2022) A numerical model for investigating the effect of viscoelasticity on the partial slip solution. Materials (Basel). https://doi.org/10.3390/MA15155182

    Article  PubMed  PubMed Central  Google Scholar 

  110. Stolyarov O, Mostovykh P (2022) Creep and stress relaxation behavior of woven polyester fabrics: experiment and modeling. Mech Time-Depend Mater. https://doi.org/10.1007/S11043-022-09537-0

    Article  Google Scholar 

  111. Vu AT, de los Angeles Avila Hernandez R, Grunwald T, Bergs T (2022) Modeling nonequilibrium thermoviscoelastic material behaviors of glass in nonisothermal glass molding. J Am Ceram Soc 105:6799–6815. https://doi.org/10.1111/JACE.18605

    Article  CAS  Google Scholar 

  112. Bagley RL, Torvik PJ (1983) Fractional calculus—a different approach to the analysis of viscoelastically damped structures. AIAA J 21:741–748. https://doi.org/10.2514/3.8142

    Article  ADS  Google Scholar 

  113. Bagley RL, Torvik PJ (1986) On the fractional calculus model of viscoelastic behavior. J Rheol (N Y) 30:133–155. https://doi.org/10.1122/1.549887

    Article  CAS  ADS  Google Scholar 

  114. Karner T, Belšak R, Gotlih J (2022) Using a fully fractional generalised Maxwell model for describing the time dependent sinusoidal creep of a dielectric elastomer actuator. Fractal Fract. https://doi.org/10.3390/FRACTALFRACT6120720

    Article  Google Scholar 

  115. Valvano S, Alaimo A, Orlando C (2023) Higher-order models for the passive damping analysis of variable-angle-tow composite plates. Comput Struct 280:106992. https://doi.org/10.1016/J.COMPSTRUC.2023.106992

    Article  Google Scholar 

  116. De Espiíndola JJ, Da Silva Neto JM, Lopes EMO (2005) A generalised fractional derivative approach to viscoelastic material properties measurement. Appl Math Comput 164:493–506. https://doi.org/10.1016/J.AMC.2004.06.099

    Article  Google Scholar 

  117. Brinson HF, Brinson LC (2008) Polymer engineering science and viscoelasticity: an introduction. Springer, New York

    Book  Google Scholar 

  118. Drozdov AD (1998) Mechanics of viscoelastic solids. Wiley, Chichester

    Google Scholar 

  119. Bergström J (2015) Mechanics of solid polymers: theory and computational modeling. Elsevier, Amsterdam

    Google Scholar 

  120. Sun PX, Yang H (2021) Time-domain calculation method based on improved hysteretic damping model. Gongcheng Lixue/Eng Mech 38:8–19. https://doi.org/10.6052/j.issn.1000-4750.2020.05.0313

    Article  Google Scholar 

  121. Scanlan RH (1970) Linear damping models and causality in vibrations. J Sound Vib 13:499–503

    Article  ADS  Google Scholar 

  122. Bert CW (1973) Material damping. an introductory review of mathematic measures and experimental technique. J Sound Vib 29:129–153. https://doi.org/10.1016/S0022-460X(73)80131-2

    Article  ADS  Google Scholar 

  123. Shu Z, You R, Zhou Y (2022) Viscoelastic materials for structural dampers: a review. Constr Build Mater. https://doi.org/10.1016/J.CONBUILDMAT.2022.127955

    Article  Google Scholar 

  124. Golla DF, Hughes PC (1985) Dynamics of viscoelastic structures—a time-domain, finite element formulation. J Appl Mech 52:897–906. https://doi.org/10.1115/1.3169166

    Article  MathSciNet  Google Scholar 

  125. Mctavish D, Hughes P (1992) Finite element modeling of linear viscoelastic structures—the GHM method. In: 33rd AIAA structures structural dynamics and materials conference. https://doi.org/10.2514/6.1992-2380

  126. McTavish DJ, Hughes PC (1993) Modeling of linear viscoelastic space structures. J Vib Acoust 115:103–110. https://doi.org/10.1115/1.2930302

    Article  Google Scholar 

  127. Cao YQ, Deng ZX, Li J, Liu HJ (2010) Multi-parameter optimization algorithm of frequency-dependent model for viscoelastic damping material. Adv Mater Res 129–131:416–420. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.129-131.416

    Article  ADS  Google Scholar 

  128. Gibson WC, Smith CA, McTavish DJ (1996) Implementation of the GHM method for viscoelastic materials using MATLAB and NASTRAN. Smart Struct Mater 2445:312–323

    Google Scholar 

  129. Balamurugan V, Narayanan S (2002) Active–passive hybrid damping in beams with enhanced smart constrained layer treatment. Eng Struct 24:355–363. https://doi.org/10.1016/S0141-0296(01)00101-8

    Article  Google Scholar 

  130. Kattimani SC, Ray MC (2014) Smart damping of geometrically nonlinear vibrations of magneto-electro-elastic plates. Compos Struct 114:51–63. https://doi.org/10.1016/J.COMPSTRUCT.2014.03.050

    Article  Google Scholar 

  131. Huang Z, Qin Z, Chu F (2016) Damping mechanism of elastic-viscoelastic–elastic sandwich structures. Compos Struct 153:96–107. https://doi.org/10.1016/j.compstruct.2016.05.105

    Article  Google Scholar 

  132. Biot MA (1955) Variational principles in irreversible thermodynamics with application to viscoelasticity. Phys Rev 97:1463–1469. https://doi.org/10.1103/PhysRev.97.1463

    Article  MathSciNet  CAS  ADS  Google Scholar 

  133. Biot MA (1954) Theory of stress-strain relations in anisotropic viscoelasticity and relaxation phenomena. J Appl Phys 25:1385–1391. https://doi.org/10.1063/1.1721573

    Article  ADS  Google Scholar 

  134. Zhang J, Zheng GT (2007) The Biot model and its application in viscoelastic composite structures. J Vib Acoust 129:533–540. https://doi.org/10.1115/1.2731408

    Article  Google Scholar 

  135. Guo X, Jiang J (2011) Passive vibration control of truss-cored sandwich plate with planar Kagome truss as one face plane. Sci China Technol Sci 54:1113–1120. https://doi.org/10.1007/S11431-011-4354-8

    Article  ADS  Google Scholar 

  136. Lin F, Rao MD, Chang W et al (2013) Vibroacoustical analysis of multiple-layered structures with viscoelastic damping cores. ISRN Mech Eng. https://doi.org/10.1155/2013/645232

    Article  Google Scholar 

  137. Lin F (2010) Vibro-acoustical analysis and design of a multiple-layer constrained viscoelastic damping structure constrained viscoelastic damping structure. Dissertation, Michigan Technological University. https://doi.org/10.37099/mtu.dc.etds/383

  138. Eugeni M, Saltari F, Mastroddi F (2021) Structural damping models for passive aeroelastic control. Aerosp Sci Technol 118:107011. https://doi.org/10.1016/J.AST.2021.107011

    Article  Google Scholar 

  139. Mastroddi F, Martarelli F, Eugeni M, Riso C (2019) Time- and frequency-domain linear viscoelastic modeling of highly damped aerospace structures. Mech Syst Signal Process 122:42–55. https://doi.org/10.1016/J.YMSSP.2018.12.023

    Article  ADS  Google Scholar 

  140. Lesieutre GA (1992) Finite elements for dynamic modeling of uniaxial rods with frequency-dependent material properties. Int J Solids Struct 29:1567–1579. https://doi.org/10.1016/0020-7683(92)90134-F

    Article  Google Scholar 

  141. Lesieutre GA, Mingori DL (2012) Finite element modeling of frequency-dependent material damping using augmenting thermodynamic fields. J Guidance 13:1040–1050. https://doi.org/10.2514/3.20577

    Article  Google Scholar 

  142. Lesieutre GA, Bianchini E, Maiani A (1996) Finite element modeling of one-dimensional viscoelastic structures using anelastic displacement fields. J Guid Control Dyn 19:520–527. https://doi.org/10.2514/3.21652

    Article  ADS  Google Scholar 

  143. Yiu YC (1993) Finite element analysis of structures with classical viscoelastic materials. In: Collecion of technical papers—AIAA/ASME/ASCE/AHS/ASC Structures, structural dynamics and materials conference, pp 2110–2119. https://doi.org/10.2514/6.1993-1551

  144. Lin CY, Chen YC, Lin CH, Chang KV (2022) Constitutive equations for analyzing stress relaxation and creep of viscoelastic materials based on standard linear solid model derived with finite loading rate. Polymers (Basel). https://doi.org/10.3390/POLYM14102124

    Article  PubMed  PubMed Central  Google Scholar 

  145. Lin CY (2020) Alternative form of standard linear solid model for characterizing stress relaxation and creep: including a novel parameter for quantifying the ratio of fluids to solids of a viscoelastic solid. Front Mater 7:11. https://doi.org/10.3389/FMATS.2020.00011/BIBTEX

    Article  ADS  Google Scholar 

  146. Lin CY, Chen WC (2022) How complex viscoelastic behaviors within a viscoelastic three-layer structure affect the measurement accuracy of ultrasound viscoelastic creep imaging. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2022.2049933/SUPPL_FILE/UMCM_A_2049933_SM6180.PDF

    Article  Google Scholar 

  147. Kolawole JT, Combrinck R, Boshoff WP (2020) Rheo-viscoelastic behaviour of fresh cement-based materials: cement paste, mortar and concrete. Constr Build Mater 248:118667. https://doi.org/10.1016/J.CONBUILDMAT.2020.118667

    Article  Google Scholar 

  148. Zhou Z (1991) Creep and stress relaxation of an incompressible viscoelastic material of the rate type. Int J Solids Struct 28:617–630. https://doi.org/10.1016/0020-7683(91)90175-F

    Article  Google Scholar 

  149. Findley W, Davis F (2013) Creep and relaxation of nonlinear viscoelastic materials. DOVER, New York

    Google Scholar 

  150. Yetkinler DN, Litsky AS (1998) Viscoelastic behaviour of acrylic bone cements. Biomaterials 19:1551–1559. https://doi.org/10.1016/S0142-9612(97)00115-4

    Article  CAS  PubMed  Google Scholar 

  151. Ornaghi HL, Almeida JHS, Monticeli FM, Neves RM (2020) Stress relaxation, creep, and recovery of carbon fiber non-crimp fabric composites. Compos Part C 3:100051. https://doi.org/10.1016/J.JCOMC.2020.100051

    Article  CAS  Google Scholar 

  152. Ornaghi HL, Almeida HS, Monticeli FM et al (2020) Time-temperature behavior of carbon/epoxy laminates under creep loading. Mech Time-Depend Mater. https://doi.org/10.1007/s11043-020-09463-z

    Article  Google Scholar 

  153. Monticeli FM, Ornaghi HL, Neves RM, Odila Hilário Cioffi M (2020) Creep/recovery and stress-relaxation tests applied in a standardized carbon fiber/epoxy composite: design of experiment approach. J Strain Anal Eng Des 55:109–117. https://doi.org/10.1177/0309324719892710

    Article  Google Scholar 

  154. Sorvari J, Malinen M (2006) Determination of the relaxation modulus of a linearly viscoelastic material. Mech Time-Depend Mater 10:125–133. https://doi.org/10.1007/S11043-006-9011-4/METRICS

    Article  ADS  Google Scholar 

  155. Song WB, Wang ZD (2013) Characterization of viscoelastic behavior of shape memory epoxy systems. J Appl Polym Sci 128:199–205. https://doi.org/10.1002/APP.38158

    Article  CAS  Google Scholar 

  156. Schoff CK (2008) Dynamic mechanical analysis. Coat TechNOL 5:44. https://doi.org/10.1201/9780429190308/DYNAMIC-MECHANICAL-ANALYSIS-KEVIN-MENARD-NOAH-MENARD

    Article  Google Scholar 

  157. Ferry J (1980) Viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

  158. Chia CT, Khor KA, Gu YW, Boey F (2002) Viscoelastic properties of plasma sprayed NiCoCrAlY coatings. Thin Solid Films 405:146–152. https://doi.org/10.1016/S0040-6090(01)01701-1

    Article  CAS  ADS  Google Scholar 

  159. Singh SP, Singh RP, Smith JF (2004) Displacement modulation based dynamic nanoindentation for viscoelastic material characterization. MRS Online Proc Libr 841(R4):6. https://doi.org/10.1557/PROC-841-R4.6

    Article  Google Scholar 

  160. Melo JDD, Radford DW (2005) Time and temperature dependence of the viscoelastic properties of CFRP by dynamic mechanical analysis. Compos Struct 70:240–253. https://doi.org/10.1016/J.COMPSTRUCT.2004.08.025

    Article  Google Scholar 

  161. Hong H, Jia DM, He H (2006) Influences of grafted side chains on the viscoelastic behavior of ternary graft copolymers. Polym Plasticity Technol Eng 45:1263–1269. https://doi.org/10.1080/03602550600915169

    Article  CAS  Google Scholar 

  162. Jrad H, Renaud F, Dion JL et al (2013) Experimental characterization, modeling and parametric identification of the hysteretic friction behavior of viscoelastic joints. Int J Appl Mech. https://doi.org/10.1142/S175882511350018X

    Article  Google Scholar 

  163. Cheng G, Gelin JC, Barrière T (2013) Physical modelling and identification of polymer viscoelastic behaviour above glass transition temperature and application to the numerical simulation of the hot embossing process. Key Eng Mater 554–557:1763–1776. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/KEM.554-557.1763

    Article  Google Scholar 

  164. Li ZL, Qin Y, Sun B et al (2019) A fractional approach to the time-temperature dependence of dynamic viscoelastic behavior. J Mech Sci Technol 33:139–147. https://doi.org/10.1007/S12206-018-1214-5

    Article  CAS  Google Scholar 

  165. Asadian H, Shelesh-Nezhad K (2020) Simulation of dynamic mechanical and viscoelastic behavior in polymer/clay nanocomposites. Polym Compos 41:817–823. https://doi.org/10.1002/PC.25412

    Article  CAS  Google Scholar 

  166. Xu Y, Xu ZD, Guo YQ et al (2021) Mathematical modeling and test verification of viscoelastic materials considering microstructures and ambient temperature influence. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2021.1992689

    Article  Google Scholar 

  167. Pittenger B, Osechinskiy S, Yablon D, Mueller T (2019) Nanoscale DMA with the atomic force microscope: a new method for measuring viscoelastic properties of nanostructured polymer materials. JOM 71:3390–3398. https://doi.org/10.1007/s11837-019-03698-z

    Article  Google Scholar 

  168. Wang F, Liao J, Huang C et al (2022) Study on the damping dynamics characteristics of a viscoelastic damping material. Processes. https://doi.org/10.3390/PR10040635

    Article  Google Scholar 

  169. Asaletha R, Bindu P, Aravind I et al (2008) Stress-relaxation behavior of natural rubber/polystyrene and natural rubber/polystyrene/natural rubber-graft-polystyrene blends. J Appl Polym Sci 108:904–913. https://doi.org/10.1002/APP.27395

    Article  CAS  Google Scholar 

  170. Reddy KS, Umakanthan S, Krishnan JM (2012) Constant strain rate experiments and constitutive modeling for a class of bitumen. Mech Time-Depend Mater 16:251–274. https://doi.org/10.1007/s11043-011-9155-8

    Article  ADS  Google Scholar 

  171. Saravanan U (2012) On the use of linear viscoelastic constitutive relations to model asphalt. Int J Pavem Eng 13:360–373. https://doi.org/10.1080/10298436.2011.599386

    Article  Google Scholar 

  172. Bier JM, Verbeek CJR, Lay MC, Van Der Merwe DW (2014) Short-term viscoelastic properties of bloodmeal-based thermoplastics. Adv Polym Technol. https://doi.org/10.1002/ADV.21420

    Article  Google Scholar 

  173. Farina A, Fusi L, Rosso F, Saccomandi G (2022) Creep, recovery and vibration of an incompressible viscoelastic material of the rate type: simple tension case. Int J Non Linear Mech. https://doi.org/10.1016/J.IJNONLINMEC.2021.103851

    Article  Google Scholar 

  174. Zhou J, Tan Y, Song Y et al (2021) Viscoelastic mechanical behavior of periodontal ligament: creep and relaxation hyper-viscoelastic constitutive models. Mech Mater. https://doi.org/10.1016/J.MECHMAT.2021.104079

    Article  Google Scholar 

  175. Wan L, Lin F (2023) Measurement of relaxation modulus of viscoelastic materials and design of testing device. Appl Sci 13:6511. https://doi.org/10.3390/APP13116511

    Article  CAS  Google Scholar 

  176. Herzog B, Gardner DJ, Lopez-Anido R, Goodell B (2005) Glass-transition temperature based on dynamic mechanical thermal analysis techniques as an indicator of the adhesive performance of vinyl ester resin. J Appl Polym Sci 97:2221–2229. https://doi.org/10.1002/APP.21868

    Article  CAS  Google Scholar 

  177. Esmaeeli R, Aliniagerdroudbari H, Hashemi SR et al (2019) Designing a new dynamic mechanical analysis (DMA) system for testing viscoelastic materials at high frequencies. Model Simul Eng. https://doi.org/10.1155/2019/7026267

    Article  Google Scholar 

  178. Pierro E, Carbone G (2021) A new technique for the characterization of viscoelastic materials: theory, experiments and comparison with DMA. J Sound Vib 515:116462. https://doi.org/10.1016/J.JSV.2021.116462

    Article  Google Scholar 

  179. Burgarella B, Maurel-Pantel A, Lahellec N et al (2019) Effective viscoelastic behavior of short fibers composites using virtual DMA experiments. Mech Time-Depend Mater 23:337–360. https://doi.org/10.1007/s11043-018-9386-z

    Article  ADS  Google Scholar 

  180. Burgarella B, Maurel-Pantel A, Lahellec N et al (2022) Modeling the effective viscoelastic properties of PEEK matrix reinforced by arbitrary oriented short glass fibers. Mech Time-Depend Mater 26:49–77. https://doi.org/10.1007/s11043-020-09475-9

    Article  CAS  ADS  Google Scholar 

  181. Prusty JK, Papazafeiropoulos G, Mohanty SC et al (2023) Experimental verification of the neural network optimization algorithm for identifying frequency-dependent constitutive parameters of viscoelastic materials. J Vib Eng Technol. https://doi.org/10.1007/s42417-023-00972-y

    Article  Google Scholar 

  182. Nashif AD, Jones DIG, Henderson JP (1985) Vibration damping. Wiley, New York

    Google Scholar 

  183. Johnson CD (1995) Design of passive damping systems. J Vib Acoust 117:171–176. https://doi.org/10.1115/1.2838659

    Article  Google Scholar 

  184. Huang Z, Qin Z, Chu F (2015) A comparative study of finite element modeling techniques for dynamic analysis of elastic-viscoelastic-elastic sandwich structures. J Sandwich Struct Mater 18:531–551. https://doi.org/10.1177/1099636215623091

    Article  Google Scholar 

  185. Huang Z, Qin Z, Chu F (2016) Vibration and damping characteristics of sandwich plates with viscoelastic core. J Vib Control 22:1876–1888. https://doi.org/10.1177/1077546314545527

    Article  MathSciNet  Google Scholar 

  186. Létourneaux F, Guerrand S, Poisson F (2000) Assessment of the acoustical comfort in high-speed trains at the SNCF: integration of subjective parameters. J Sound Vib 231:839–846. https://doi.org/10.1006/JSVI.1999.2567

    Article  ADS  Google Scholar 

  187. Rao MD (2003) Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes. J Sound Vib 262:457–474. https://doi.org/10.1016/S0022-460X(03)00106-8

    Article  ADS  Google Scholar 

  188. Hong JY, Cha Y, Jeon JY (2015) Noise in the passenger cars of high-speed trains. J Acoust Soc Am 138:3513. https://doi.org/10.1121/1.4936900

    Article  PubMed  ADS  Google Scholar 

  189. Parizet E, Hamzaoui N, Jacquemoud J (2002) Noise assessment in a high-speed train. Appl Acoust 63:1109–1124. https://doi.org/10.1016/S0003-682X(02)00017-8

    Article  Google Scholar 

  190. Nakra BC (1998) Vibration control in machines and structures using viscoelastic damping. J Sound Vib 211:449–466. https://doi.org/10.1006/jsvi.1997.1317

    Article  ADS  Google Scholar 

  191. Yi S, Ahmad MF, Hilton HH (1993) Dynamic responses of plates with viscoelastic damping treatment. In: Proceedings of ASME international design engineering technical conferences and computers and information in engineering conference, pp 437–445. https://doi.org/10.1115/DETC1993-0133

  192. Kumar A, Panda S (2016) Design of a 1–3 viscoelastic composite layer for improved free/constrained layer passive damping treatment of structural vibration. Compos Part B Eng 96:204–214. https://doi.org/10.1016/j.compositesb.2016.04.020

    Article  CAS  Google Scholar 

  193. Cortés F, Elejabarrieta MJ (2008) Structural vibration of flexural beams with thick unconstrained layer damping. Int J Solids Struct 45:5805–5813. https://doi.org/10.1016/j.ijsolstr.2008.06.015

    Article  CAS  Google Scholar 

  194. He W, He K, Yao C et al (2022) Comparison of damping performance of an aluminum bridge via material damping, support damping and external damping methods. Structures 45:1139–1155. https://doi.org/10.1016/J.ISTRUC.2022.09.089

    Article  Google Scholar 

  195. Chen LH, Huang SC (2001) Vibration attenuation of a cylindrical shell with constrained layer damping strips treatment. Comput Struct 79:1355–1362. https://doi.org/10.1016/S0045-7949(01)00009-8

    Article  Google Scholar 

  196. Nayfeh SA (2004) Damping of flexural vibration in the plane of lamination of elastic-viscoelastic sandwich beams. J Sound Vib 276:689–711. https://doi.org/10.1016/j.jsv.2003.08.034

    Article  ADS  Google Scholar 

  197. Berthelot JM (2006) Damping analysis of laminated beams and plates using the Ritz method. Compos Struct 74:186–201. https://doi.org/10.1016/j.compstruct.2005.04.031

    Article  Google Scholar 

  198. Sher BR, Moreira RAS (2013) Dimensionless analysis of constrained damping treatments. Compos Struct 99:241–254. https://doi.org/10.1016/j.compstruct.2012.11.037

    Article  Google Scholar 

  199. Khalfi B, Ross A (2013) Transient response of a plate with partial constrained viscoelastic layer damping. Int J Mech Sci 68:304–312. https://doi.org/10.1016/j.ijmecsci.2013.01.032

    Article  Google Scholar 

  200. Kumar A, Panda S, Narsaria V, Kumar A (2018) Augmented constrained layer damping in plates through the optimal design of a 0–3 viscoelastic composite layer. JVC/Journal Vib Control 24:5514–5524. https://doi.org/10.1177/1077546318756502

    Article  MathSciNet  Google Scholar 

  201. Duan Y, Huo L (2023) Pounding tuned mass damper with constrained layer damping. Adv Struct Eng 26:2110–2122. https://doi.org/10.1177/13694332221149484/FORMAT/EPUB

    Article  Google Scholar 

  202. Benjeddou A (2001) Advances in hybrid active-passive vibration and noise control via piezoelectric and viscoelastic constrained layer treatments. JVC/Journal Vib Control 7:565–602. https://doi.org/10.1177/107754630100700406

    Article  Google Scholar 

  203. Kumar N, Singh SP (2009) Vibration and damping characteristics of beams with active constrained layer treatments under parametric variations. Mater Des 30:4162–4174. https://doi.org/10.1016/J.MATDES.2009.04.044

    Article  Google Scholar 

  204. Gupta A, Panda S, Reddy RS (2021) Shear actuation-based hybrid damping treatment of sandwich structures using a graphite particle-filled viscoelastic layer. J Intell Mater Syst Struct 32:2477–2493. https://doi.org/10.1177/1045389X211002649/FORMAT/EPUB

    Article  CAS  Google Scholar 

  205. Tomlinson GR (1996) Overview of active/passive damping techniques employing viscoelastic materials. In: 3rd international on conference on Intelligent Materials 3rd Eur Conf Smart Structures and Materials, vol 2779, p 656. https://doi.org/10.1117/12.237033

  206. Trindade MA, Benjeddou A, Ohayon R (2000) Modeling of frequency-dependent viscoelastic materials for active–passive vibration damping. J Vib Acoust 122:169–174. https://doi.org/10.1115/1.568429

    Article  Google Scholar 

  207. Ro J, Baz A (2002) Optimum placement and control of active constrained layer damping using modal strain energy approach. JVC/Journal Vib Control 8:861–876. https://doi.org/10.1177/107754602029204

    Article  Google Scholar 

  208. Trindade MA (2007) Optimization of active–passive damping treatments using piezoelectric and viscoelastic materials. Smart Mater Struct 16:2159–2168. https://doi.org/10.1088/0964-1726/16/6/018

    Article  ADS  Google Scholar 

  209. Wang Y, Wang Z, Zu L (2013) Stability of viscoelastic rectangular plate with a piezoelectric layer subjected to follower force. Arch Appl Mech 83:495–507. https://doi.org/10.1007/s00419-012-0698-1

    Article  Google Scholar 

  210. Zhai J, Li J, Wei D et al (2019) Vibration control of an aero pipeline system with active constraint layer damping treatment. Appl Sci 9:2094. https://doi.org/10.3390/APP9102094

    Article  Google Scholar 

  211. Liu J, Xie Z, Gao J et al (2022) Failure characteristics of the active-passive damping in the functionally graded piezoelectric layers-magnetorheological elastomer sandwich structure. Int J Mech Sci 215:106944. https://doi.org/10.1016/J.IJMECSCI.2021.106944

    Article  Google Scholar 

  212. Guedes RM, Pereira CMC, Fonseca A, Oliveira MSA (2013) The effect of carbon nanotubes on viscoelastic behaviour of biomedical grade ultra-high molecular weight polyethylene. Compos Struct 105:263–268. https://doi.org/10.1016/J.COMPSTRUCT.2013.05.027

    Article  Google Scholar 

  213. Ansari R, Gholami R, Sahmani S (2014) Free vibration of size-dependent functionally graded microbeams based on the strain gradient reddy beam theory. Int J Comput Methods Eng Sci Mech 15:401–412. https://doi.org/10.1080/15502287.2014.915249

    Article  MathSciNet  Google Scholar 

  214. Ebrahimi F, Barati MR (2016) Nonlocal strain gradient theory for damping vibration analysis of viscoelastic inhomogeneous nano-scale beams embedded in visco-Pasternak foundation. J Vib Control 24:2080–2095. https://doi.org/10.1177/1077546316678511

    Article  MathSciNet  Google Scholar 

  215. Karličić D, Kozić P, Pavlović R (2014) Free transverse vibration of nonlocal viscoelastic orthotropic multi-nanoplate system (MNPS) embedded in a viscoelastic medium. Compos Struct 115:89–99. https://doi.org/10.1016/J.COMPSTRUCT.2014.04.002

    Article  Google Scholar 

  216. Bakhshi Khaniki H, Hosseini-Hashemi S (2017) Dynamic response of biaxially loaded double-layer viscoelastic orthotropic nanoplate system under a moving nanoparticle. Int J Eng Sci 115:51–72. https://doi.org/10.1016/J.IJENGSCI.2017.02.005

    Article  MathSciNet  CAS  Google Scholar 

  217. Ansari R, Faraji Oskouie M, Gholami R (2016) Size-dependent geometrically nonlinear free vibration analysis of fractional viscoelastic nanobeams based on the nonlocal elasticity theory. Physica E Low-dimens Syst Nanostruct 75:266–271. https://doi.org/10.1016/J.PHYSE.2015.09.022

    Article  ADS  Google Scholar 

  218. Ghorbanpour Arani A, Mosayyebi M, Kolahdouzan F et al (2017) Refined zigzag theory for vibration analysis of viscoelastic functionally graded carbon nanotube reinforced composite microplates integrated with piezoelectric layers. Proc Inst Mech Eng Part G J Aerosp Eng 231:2464–2478. https://doi.org/10.1177/0954410016667150

    Article  CAS  Google Scholar 

  219. Oskouie MF, Ansari R, Sadeghi F (2017) Nonlinear vibration analysis of fractional viscoelastic Euler–Bernoulli nanobeams based on the surface stress theory. Acta Mech Solida Sin 30:416–424. https://doi.org/10.1016/J.CAMSS.2017.07.003

    Article  Google Scholar 

  220. Loghman E, Bakhtiari-Nejad F, Kamali EA et al (2021) Nonlinear vibration of fractional viscoelastic micro-beams. Int J Non Linear Mech 137:103811. https://doi.org/10.1016/J.IJNONLINMEC.2021.103811

    Article  Google Scholar 

  221. Rahmani A, Safaei B, Qin Z (2021) On wave propagation of rotating viscoelastic nanobeams with temperature effects by using modified couple stress-based nonlocal Eringen’s theory. Eng Comput 1:1–21. https://doi.org/10.1007/S00366-021-01429-0/FIGURES/9

    Article  Google Scholar 

  222. Hajmohammad MH, Azizkhani MB, Kolahchi R (2018) Multiphase nanocomposite viscoelastic laminated conical shells subjected to magneto-hygrothermal loads: dynamic buckling analysis. Int J Mech Sci 137:205–213. https://doi.org/10.1016/J.IJMECSCI.2018.01.026

    Article  Google Scholar 

  223. Yuan Y, Zhao X, Zhao Y et al (2021) Dynamic stability of nonlocal strain gradient FGM truncated conical microshells integrated with magnetostrictive facesheets resting on a nonlinear viscoelastic foundation. Thin-Walled Struct. https://doi.org/10.1016/j.tws.2020.107249

    Article  Google Scholar 

  224. Al-Furjan MSH, Samimi-Sohrforozani E, Habibi M et al (2021) Vibrational characteristics of a higher-order laminated composite viscoelastic annular microplate via modified couple stress theory. Compos Struct 257:113152. https://doi.org/10.1016/J.COMPSTRUCT.2020.113152

    Article  Google Scholar 

  225. Alimirzaei S, Mohammadimehr M, Tounsi A (2019) Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions. Struct Eng Mech 71:485–502. https://doi.org/10.12989/sem.2019.71.5.485

    Article  Google Scholar 

  226. Alipour MM, Rajabi I (2017) viscoelastic substrates effects on the elimination or reduction of the sandwich structures oscillations based on the Kelvin–Voigt Model. Lat Am J Solids Struct 14:2463–2497

    Article  Google Scholar 

  227. Zenkour AM, El-Shahrany HD (2022) Controlled motion of viscoelastic fiber-reinforced magnetostrictive sandwich plates resting on visco-Pasternak foundation. Mech Adv Mater Struct 29:2312–2321. https://doi.org/10.1080/15376494.2020.1861395

    Article  CAS  Google Scholar 

  228. Zhu R, Liu Y, Bojja N et al (2023) Vibration attenuation of rotating disks via acoustic black holes. Int J Mech Sci 242:108025. https://doi.org/10.1016/J.IJMECSCI.2022.108025

    Article  Google Scholar 

  229. Cheng TH, Ren M, Li ZZ, Shen YD (2015) Vibration and damping analysis of composite fiber reinforced wind blade with viscoelastic damping control. Adv Mater Sci Eng. https://doi.org/10.1155/2015/146949

    Article  Google Scholar 

  230. Liang X, Wang Z, Wang L, Liu G (2014) Semi-analytical solution for three-dimensional transient response of functionally graded annular plate on a two parameter viscoelastic foundation. J Sound Vib. https://doi.org/10.1016/J.JSV.2014.01.021

    Article  Google Scholar 

  231. Arani AG, Jalaei MH (2017) Investigation of the longitudinal magnetic field effect on dynamic response of viscoelastic graphene sheet based on sinusoidal shear deformation theory. Phys B Condens Matter 506:94–104. https://doi.org/10.1016/J.PHYSB.2016.11.004

    Article  CAS  ADS  Google Scholar 

  232. Kerwin EM (1959) Damping of flexural waves by a constrained viscoelastic layer. J Acoust Soc Am 31:952. https://doi.org/10.1121/1.1907821

    Article  ADS  Google Scholar 

  233. Ditaranto RA (1964) Theory of vibratory bending for elastic and viscoelastic layered finite-length beams. J Appl Mech Trans ASME 32:881–886. https://doi.org/10.1115/1.3627330

    Article  Google Scholar 

  234. Mead DJ, Markus S (1970) Loss factors and resonant frequencies of encastré damped sandwich beams. J Sound Vib 12:99–112. https://doi.org/10.1016/0022-460X(70)90050-7

    Article  ADS  Google Scholar 

  235. Mead DJ, Markus S (1969) The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions. J Sound Vib 10:163–175. https://doi.org/10.1016/0022-460X(69)90193-X

    Article  ADS  Google Scholar 

  236. Ghinet S (2005) Statistical energy analysis of the transmission loss of sandwich and laminate composite structures. http://savoirs.usherbrooke.ca/handle/11143/1770

  237. Douglas BE, Yang JCS (1978) Transverse compressional damping in the vibratory response of elastic-viscoelastic-elastic beams. AIAA J 16:925–930. https://doi.org/10.2514/3.7595

    Article  ADS  Google Scholar 

  238. Sylwan O (1987) Shear and compressional damping effects of constrained layered beams. J Sound Vib 118:35–45. https://doi.org/10.1016/0022-460X(87)90253-7

    Article  ADS  Google Scholar 

  239. Ungar EE (1962) Loss factors of viscoelastically damped beam structures. J Acoust Soc Am 34:1082–1089. https://doi.org/10.1121/1.1918249

    Article  ADS  Google Scholar 

  240. Yan MJ, Dowell EH (1972) Governing equations for vibrating constrained-layer damping sandwich plates and beams. J Appl Mech Trans ASME 39:1041–1046. https://doi.org/10.1115/1.3422825

    Article  Google Scholar 

  241. Rao DK (1977) Vibration of short sandwich beams. J Sound Vib 52:253–263. https://doi.org/10.1016/0022-460X(77)90644-7

    Article  ADS  Google Scholar 

  242. Rao DK (1978) Frequency and loss factors of sandwich beams under various boundary conditions. J Mech Eng Sci 20:271–282. https://doi.org/10.1243/JMES_JOUR_1978_020_047_02

    Article  ADS  Google Scholar 

  243. Durocher LL, Solecki R (1976) Harmonic vibrations of isotropic, elastic, and elastic/viscoelastic three-layered plates. J Acoust Soc Am 60:105–112. https://doi.org/10.1121/1.381077

    Article  ADS  Google Scholar 

  244. Wang G, Veeramani S, Wereley NM (2000) Analysis of sandwich plates with isotropic face plates and a viscoelastic core. J Vib Acoust Trans ASME 122:305–312. https://doi.org/10.1115/1.1303065

    Article  Google Scholar 

  245. Sisemore CL, Darvennes CM (2002) Transverse vibration of elastic-viscoelastic-elastic sandwich beams: compression—experimental and analytical study. J Sound Vib 252:155–167. https://doi.org/10.1006/jsvi.2001.4038

    Article  ADS  Google Scholar 

  246. Sisemore CL, Smaili AA, Darvennes CM (2021) Experimental measurement of compressional damping in an elastic-viscoelastic-elastic sandwich beam. In: ASME’s international mechanical engineering congress & exposition 1999–X, pp 223–227. https://doi.org/10.1115/IMECE1999-0202

  247. Lee BC, Kim KJ (1999) Shear and normal strain effects of core layers in vibration of square sandwich plates under clamped boundary conditions. J Sound Vib 228:845–856. https://doi.org/10.1006/jsvi.1999.2450

    Article  ADS  Google Scholar 

  248. He J-F, Ma B-A (1988) ANALYSIS OF FLEXURAL VIBRATION OF VISCOELASTICALLY DAMPED SANDWICH PLATES. J Sound Vib 126:37–47

    Article  ADS  Google Scholar 

  249. Kosmatka JB, Liguore SL (1993) Review of methods for analyzing constrained layer damped structures. J Aerosp Eng 6:268–283. https://doi.org/10.1061/(ASCE)0893-1321(1993)6:3(268)

    Article  Google Scholar 

  250. Johnson CD, Kienholz DA (1982) Finite element prediction of damping in structures with constrained viscoelastic layers. AIAA J 20:1284–1290. https://doi.org/10.2514/3.51190

    Article  ADS  Google Scholar 

  251. Plouin A-S, Balmms E (1998) Pseudo-modal representations of large models with viscoelastic behavior. In: Proceedings of SPIE—the international society for optical engineering

  252. Larbi W, Deü JF, Ohayon R (2016) Vibroacoustic analysis of double-wall sandwich panels with viscoelastic core. Comput Struct 174:92–103. https://doi.org/10.1016/J.COMPSTRUC.2015.09.012

    Article  Google Scholar 

  253. Ma BA, He JF (1992) A finite element analysis of viscoelastically damped sandwich plates. J Sound Vib 152:107–123. https://doi.org/10.1016/0022-460X(92)90068-9

    Article  ADS  Google Scholar 

  254. Arvin H, Sadighi M, Ohadi AR (2010) A numerical study of free and forced vibration of composite sandwich beam with viscoelastic core. Compos Struct 92:996–1008. https://doi.org/10.1016/j.compstruct.2009.09.047

    Article  Google Scholar 

  255. Bilasse M, Daya EM, Azrar L (2010) Linear and nonlinear vibrations analysis of viscoelastic sandwich beams. J Sound Vib 329:4950–4969. https://doi.org/10.1016/J.JSV.2010.06.012

    Article  ADS  Google Scholar 

  256. Elmoghazy YH, Safaei B, Sahmani S (2023) Finite element analysis for dynamic response of viscoelastic sandwiched structures integrated with aluminum sheets. Facta Univ Ser Mech Eng. https://doi.org/10.22190/FUME231004045E

    Article  Google Scholar 

  257. Zhang SQ, Gao YS, Zhao GZ et al (2021) Numerical modeling for viscoelastic sandwich smart structures bonded with piezoelectric materials. Compos Struct 278:114703. https://doi.org/10.1016/J.COMPSTRUCT.2021.114703

    Article  Google Scholar 

  258. Wang Y, Inman DJ (2013) Finite element analysis and experimental study on dynamic properties of a composite beam with viscoelastic damping. J Sound Vib 332:6177–6191. https://doi.org/10.1016/J.JSV.2013.06.016

    Article  ADS  Google Scholar 

  259. Moita JS, Araújo AL, Martins P et al (2011) A finite element model for the analysis of viscoelastic sandwich structures. Comput Struct 89:1874–1881. https://doi.org/10.1016/j.compstruc.2011.05.008

    Article  Google Scholar 

  260. Barbosa FS, Farage MCR (2008) A finite element model for sandwich viscoelastic beams: experimental and numerical assessment. J Sound Vib 317:91–111. https://doi.org/10.1016/j.jsv.2008.03.013

    Article  ADS  Google Scholar 

  261. Lin F, Rao MD (2010) Vibration analysis of a multiple-layered viscoelastic structure using the biot damping model. AIAA J 48:624–634. https://doi.org/10.2514/1.44339

    Article  ADS  Google Scholar 

  262. Won SG, Bae SH, Cho JR et al (2013) Three-layered damped beam element for forced vibration analysis of symmetric sandwich structures with a viscoelastic core. Finite Elem Anal Des 68:39–51. https://doi.org/10.1016/J.FINEL.2013.01.004

    Article  MathSciNet  Google Scholar 

  263. Kpeky F, Boudaoud H, Abed-Meraim F, Daya EM (2015) Modeling of viscoelastic sandwich beams using solid–shell finite elements. Compos Struct 133:105–116. https://doi.org/10.1016/J.COMPSTRUCT.2015.07.055

    Article  Google Scholar 

  264. Ren S, Zhao G, Zhang S (2020) A layerwise finite element formulation for vibration and damping analysis of sandwich plate with moderately thick viscoelastic core. Mech Adv Mater Struct 27:1201–1212. https://doi.org/10.1080/15376494.2018.1504360

    Article  Google Scholar 

  265. Eshaghi M, Rakheja S, Sedaghati R (2015) An accurate technique for pre-yield characterization of MR fluids. Smart Mater Struct 24:065018. https://doi.org/10.1088/0964-1726/24/6/065018

    Article  CAS  ADS  Google Scholar 

  266. Saravanan C, Ganesan N, Ramamurti V (2000) Vibration and damping analysis of multilayered fluid filled cylindrical shells with constrained viscoelastic damping using modal strain energy method. Comput Struct 75:395–417. https://doi.org/10.1016/S0045-7949(99)00099-1

    Article  Google Scholar 

  267. Daya EM, Potier-Ferry M (2002) A shell finite element for viscoelastically damped sandwich structures. Rev Eur Elem 11:39–56. https://doi.org/10.3166/reef.11.39-56

    Article  Google Scholar 

  268. Daya EM, Potier-Ferry M (2001) Numerical method for nonlinear eigenvalue problems application to vibrations of viscoelastic structures. Comput Struct 79:533–541. https://doi.org/10.1016/S0045-7949(00)00151-6

    Article  MathSciNet  Google Scholar 

  269. Boström A, Johansson G, Olsson P (2001) On the rational derivation of a heirarchy of dynamic equations for a homogeneous, isotropic, elastic plate. Int J Solids Struct 38:2487–2501. https://doi.org/10.1016/S0020-7683(00)00180-3

    Article  Google Scholar 

  270. Koutsawa Y, Charpentier I, Daya EM, Cherkaoui M (2008) A generic approach for the solution of nonlinear residual equations. Part I: the Diamant toolbox. Comput Methods Appl Mech Eng 198:572–577. https://doi.org/10.1016/J.CMA.2008.09.003

    Article  ADS  Google Scholar 

  271. Lampoh K, Charpentier I, Daya EM (2011) A generic approach for the solution of nonlinear residual equations. Part III: sensitivity computations. Comput Methods Appl Mech Eng 200:2983–2990. https://doi.org/10.1016/J.CMA.2011.06.009

    Article  MathSciNet  ADS  Google Scholar 

  272. Lampoh K, Charpentier I, El Mostafa D (2014) Eigenmode sensitivity of damped sandwich structures. Compt Rend Méc 342:700–705. https://doi.org/10.1016/J.CRME.2014.08.001

    Article  ADS  Google Scholar 

  273. Ganguly S, Nandi A, Neogy S (2018) A state space viscoelastic shaft finite element for stability and response analysis of rotors with structural and frequency dependent damping. J Vib Eng Technol 6:1–18. https://doi.org/10.1007/S42417-018-0006-7/FIGURES/27

    Article  Google Scholar 

  274. Zhang G, Zheng H, Zhu X (2023) Optimization of composite plates with viscoelastic damping layer for high sound transmission loss under stiffness and strength constraints. Compos Struct 306:116563. https://doi.org/10.1016/J.COMPSTRUCT.2022.116563

    Article  Google Scholar 

  275. Lewandowski R, Wielentejczyk P, Litewka P (2021) Dynamic characteristics of multi-layered, viscoelastic beams using the refined zig-zag theory. Compos Struct 259:113212. https://doi.org/10.1016/j.compstruct.2020.113212

    Article  CAS  Google Scholar 

  276. Abdoun F, Azrar L, Daya EM, Potier-Ferry M (2009) Forced harmonic response of viscoelastic structures by an asymptotic numerical method. Comput Struct 87:91–100. https://doi.org/10.1016/j.compstruc.2008.08.006

    Article  Google Scholar 

  277. Duigou L, El Mostafa D, Potier-Ferry M (2003) Iterative algorithms for non-linear eigenvalue problems. application to vibrations of viscoelastic shells. Comput Methods Appl Mech Eng 192:1323–1335. https://doi.org/10.1016/S0045-7825(02)00641-2

    Article  ADS  Google Scholar 

  278. Alvelid M, Enelund M (2007) Modelling of constrained thin rubber layer with emphasis on damping. J Sound Vib 300:662–675. https://doi.org/10.1016/J.JSV.2006.08.031

    Article  ADS  Google Scholar 

  279. Bilasse M, Azrar L, Daya EM (2011) Complex modes based numerical analysis of viscoelastic sandwich plates vibrations. Comput Struct 89:539–555. https://doi.org/10.1016/J.COMPSTRUC.2011.01.020

    Article  Google Scholar 

  280. Cai C, Zheng H, Liu GR (2004) Vibration analysis of a beam with PCLD patch. Appl Acoust 65:1057–1076. https://doi.org/10.1016/J.APACOUST.2004.05.004

    Article  Google Scholar 

  281. Baber TT, Maddox RA, Orozco CE (1998) A finite element model for harmonically excited viscoelastic sandwich beams. Comput Struct 66:105–113

    Article  Google Scholar 

  282. Zapfe JA, Lesieutre GA (1999) A discrete layer beam finite element for the dynamic analysis of composite sandwich beams with integral damping layers. Comput Struct 70:647–666. https://doi.org/10.1016/S0045-7949(98)00212-0

    Article  Google Scholar 

  283. Sainsbury MG, Zhang QJ (1999) The Galerkin element method applied to the vibration of damped sandwich beams. Comput Struct 71:239–256. https://doi.org/10.1016/S0045-7949(98)00242-9

    Article  Google Scholar 

  284. Amichi K, Atalla N (2009) A new 3D finite element for sandwich beams with a viscoelastic core. J Vib Acoust 10(1115/1):3025828

    Google Scholar 

  285. Cristina Galucio A, Deü J-F, Ohayon R (2004) Finite element formulation of viscoelastic sandwich beams using fractional derivative operators. Comput Mech. https://doi.org/10.1007/s00466-003-0529-xï

    Article  Google Scholar 

  286. Moreira RAS, Dias Rodrigues J (2006) A layerwise model for thin soft core sandwich plates. Comput Struct 84:1256–1263. https://doi.org/10.1016/J.COMPSTRUC.2006.01.020

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Babak Safaei or Zhaoye Qin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elmoghazy, Y.H., Safaei, B., Asmael, M. et al. Computational Modelling and Analysis of Effect of Viscoelastic Materials on Damping and Vibrational Behaviors of Composite Structures—An Extensive Review. Arch Computat Methods Eng (2024). https://doi.org/10.1007/s11831-023-10057-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11831-023-10057-4

Navigation