Skip to main content
Log in

A Review and Study on Ritz Method Admissible Functions with Emphasis on Buckling and Free Vibration of Isotropic and Anisotropic Beams and Plates

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

The first goal of this work is to present a literature review regarding the use of several sets of admissible functions in the Ritz method. The papers reviewed deal mainly with the analysis of buckling and free vibration of isotropic and anisotropic beams and plates. Theoretically, in order to obtain a correct solution, the set of admissible functions must not violate the essential or geometric boundary conditions and should also be linearly independent and complete. However, in practice, some of the sets of functions proposed in the literature present a bad numerical behavior, namely in terms of convergence, computational time and stability. Thus, a second goal of the present work is to compare the performance of several sets of functions in terms of these three features. To achieve this objective, the free vibration analysis of a fully clamped rectangular plate is carried out using six different sets of functions, along with the study of the convergence of natural frequencies and mode shapes, the computational time and the numerical stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Afshari M, Inman DJ (2013) Continuous crack modeling in piezoelectrically driven vibrations of an Euler-Bernoulli beam. J Vib Control 19(3):341–355. doi:10.1177/1077546312437803

    MathSciNet  Google Scholar 

  2. Ansari R, Rouhi H (2011) Analytical treatment of the free vibration of single-walled carbon nanotubes based on the nonlocal Flugge shell theory. J Eng Mater Technol 134(1):011008. doi:10.1115/1.4005347

    Google Scholar 

  3. Ansari R, Rouhi H (2012) Nonlocal Flugge shell model for thermal buckling of multi-walled carbon nanotubes with layerwise boundary conditions. J Therm Stress 35(4):326–341. doi:10.1080/01495739.2012.663683

    Google Scholar 

  4. Ansari R, Sahmani S, Rouhi H (2011) Axial buckling analysis of single-walled carbon nanotubes in thermal environments via the Rayleigh-Ritz technique. Comput Mater Sci 50(10):3050–3055. doi:10.1016/j.commatsci.2011.05.027

    Google Scholar 

  5. Ansari R, Sahmani S, Rouhi H (2011) Rayleigh-Ritz axial buckling analysis of single-walled carbon nanotubes with different boundary conditions. Phys Lett A 375(9):1255–1263. doi:10.1016/j.physleta.2011.01.046

    Google Scholar 

  6. Aref AJ, Alampalli S, He Y (2001) Ritz-based static analysis method for fiber reinforced plastic rib core skew bridge superstructure. J Eng Mech-ASCE 127(5):450–458. doi:10.1061/(ASCE)0733-9399(2001) 127:5(450)

    Google Scholar 

  7. Arshad SH, Naeem MN, Sultana N, Iqbal Z, Shah AG (2011) Effects of exponential volume fraction law on the natural frequencies of FGM cylindrical shells under various boundary conditions. Arch Appl Mech 81(8):999–1016. doi:10.1007/s00419-010-0460-5

    MATH  Google Scholar 

  8. Ashton JE (1969a) Analysis of anisotropic plates II. J Compos Mater 3(3):470–479. doi:10.1177/002199836900300311

    Google Scholar 

  9. Ashton JE (1969b) Natural modes of free-free anisotropic plates. Shock Vib Bull 39(4):93–99

    Google Scholar 

  10. Ashton JE (1970) Anisotropic plate analysis-boundary conditions. J Compos Mater 4(2):162–171. doi:10.1177/002199837000400201

    Google Scholar 

  11. Ashton JE, Anderson JD (1969) The natural modes of vibration of boron-epoxy plates. Shock Vib Bull 39(4):81–91

    Google Scholar 

  12. Ashton JE, Waddoups ME (1969) Analysis of anisotropic plates. J Compos Mater 3(1):148–165. doi:10.1177/002199836900300111

    Google Scholar 

  13. Askari E, Daneshmand F, Amabili M (2011) Coupled vibrations of a partially fluid-filled cylindrical container with an internal body including the effect of free surface waves. J Fluid Struct 27(7):1049–1067. doi:10.1016/j.jfluidstructs.2011.04.010

    Google Scholar 

  14. Bae CH, Kwak MK, Koo JR (2012) Free vibration analysis of a hanged clamped-free cylindrical shell partially submerged in fluid: the effect of external wall, internal shaft, and flat bottom. J Sound Vib 331(17):4072–4092. doi:10.1016/j.jsv.2012.04.020

    Google Scholar 

  15. Bambill DV, Felix DH, Rossit CA (2006) Natural frequencies of thin, rectangular plates with holes or orthotropic “patches” carrying an elastically mounted mass. Int J Solids Struct 43(14–15):4116–4135. doi:10.1016/j.ijsolstr.2005.03.051

    MATH  Google Scholar 

  16. Bassily SF, Dickinson SM (1972) Buckling and lateral vibration of rectangular plates subject to inplane loads-A Ritz approach. J Sound Vib 24(2):219–239. doi:10.1016/0022-460X(72)90951-0

    Google Scholar 

  17. Bassily SF, Dickinson SM, (1973) Corrigendum: Buckling and lateral vibration of rectangular plates subject to inplane loads-A Ritz approach: (S. F. Bassily and S. M. Dickinson, (1972) J Sound Vib 24, 219–239). J Sound Vib 29(4):505–508. doi:10.1016/S0022-460X(73)80066-5

  18. Bassily SF, Dickinson SM (1975) On the use of beam functions for problems of plates involving free edges. J Appl Mech 42(4):858–864. doi:10.1115/1.3423720

    MATH  Google Scholar 

  19. Bert CW, Mayberry BL (1969) Free vibrations of unsymmetrically laminated anisotropic plates with clamped edges. J Compos Mater 3(2):282–293. doi:10.1177/002199836900300207

    Google Scholar 

  20. Berthelot JM (2006) Damping analysis of laminated beams and plates using the Ritz method. Compos Struct 74(2):186–201. doi:10.1016/j.compstruct.2005.04.031

    Google Scholar 

  21. Berthelot JM, Sefrani Y (2004) Damping analysis of unidirectional glass and Kevlar fibre composites. Compos Sci Technol 64(9):1261–1278. doi:10.1016/j.compscitech.2003.10.003

    Google Scholar 

  22. Bhat RB (1985a) Natural frequencies of rectangular plates using characteristic orthogonal polynomials in Rayleigh-Ritz method. J Sound Vib 102(4):493–499. doi:10.1016/S0022-460X(85)80109-7

    Google Scholar 

  23. Bhat RB (1985) Plate deflections using orthogonal polynomials. J Eng Mech-ASCE 111(11):1301–1309. doi:10.1061/(ASCE)0733-9399(1985) 111:11(1301)

    Google Scholar 

  24. Bhat RB (1986) Transverse vibrations of a rotating uniform cantilever beam with tip mass as predicted by using beam characteristic orthogonal polynomials in the Rayleigh-Ritz method. J Sound Vib 105(2):199–210. doi:10.1016/0022-460X(86)90149-5

    Google Scholar 

  25. Bhat RB (1987a) Beam characteristic orthogonal polynomials with fractional power increments. J Sound Vib 112(3):556–558. doi:10.1016/S0022-460X(87)80121-9

    Google Scholar 

  26. Bhat RB (1987b) Flexural vibration of polygonal plates using characteristic orthogonal polynomials in two variables. J Sound Vib 114(1):65–71. doi:10.1016/S0022-460X(87)80234-1

    Google Scholar 

  27. Bhat RB (1987c) Rayleigh-Ritz method with separate deflection expressions for structural segments. J Sound Vib 115(1):174–177. doi:10.1016/0022-460X(87)90500-1

    Google Scholar 

  28. Bhat RB, Laura PAA, Gutierrez RG, Cortinez VH, Sanzi HC (1990) Numerical experiments on the determination of natural frequencies of transverse vibrations of rectangular plates of non-uniform thickness. J Sound Vib 138(2):205–219. doi:10.1016/0022-460X(90)90538-B

    Google Scholar 

  29. Blevins RD (1979) Formulas for natural frequency and mode shape. Van Nostrand Reinhold, New York

    Google Scholar 

  30. Bose T, Mohanty AR (2014) Detection and monitoring of side crack in a rectangular plate using mobility. J Vib Control. doi:10.1177/1077546314534285

    Google Scholar 

  31. Bose T, Mohanty AR (2015) Sound radiation response of a rectangular plate having a side crack of arbitrary length, orientation, and position. J Vib Acoust 137(2):021,019–021,019, doi:10.1115/1.4029449

  32. Chai GB (1993) Free vibration of rectangular isotropic plates with and without a concentrated mass. Comput Struct 48(3):529–533. doi:10.1016/0045-7949(93)90331-7

    MATH  Google Scholar 

  33. Chai GB (1994) Buckling of generally laminated composite plates with various edge support conditions. Compos Struct 29(3):299–310. doi:10.1016/0263-8223(94)90026-4

    Google Scholar 

  34. Chai GB (1995) Frequency analysis of a S-C-S-C plate carrying a concentrated mass. J Sound Vib 179(1):170–177. doi:10.1006/jsvi.1995.0011

    Google Scholar 

  35. Chai GB (1995b) Frequency analysis of rectangular isotropic plates carrying a concentrated mass. Comput Struct 56(1):39–48. doi:10.1016/0045-7949(94)00533-9

    Google Scholar 

  36. Chai GB, Khong PW (1993) The effect of varying the support conditions on the buckling of laminated composite plates. Compos Struct 24(2):99–106. doi:10.1016/0263-8223(93)90031-K

    Google Scholar 

  37. Chai GB, Low KH, Lim TM (1995) Tension effects on the natural frequencies of centre-loaded clamped beams. J Sound Vib 181(4):727–736. doi:10.1006/jsvi.1995.0168

    Google Scholar 

  38. Chakraverty S, Bhat RB, Stiharu I (1999) Recent research on vibration of structures using boundary characteristic orthogonal polynomials in the Rayleigh-Ritz method. Shock Vib Dig 31(3):187–194

    Google Scholar 

  39. Cheung KY, Zhou D (1999a) The free vibrations of tapered rectangular plates using a new set of beam functions with the Rayleigh-Ritz method. J Sound Vib 223(5):703–722. doi:10.1006/jsvi.1998.2160

    Google Scholar 

  40. Cheung YK, Zhou D (1999b) Eigenfrequencies of tapered rectangular plates with intermediate line supports. Int J Solids Struct 36(1):143–166. doi:10.1016/S0020-7683(97)00272-2

    MATH  Google Scholar 

  41. Cheung YK, Zhou D (1999c) The free vibrations of rectangular composite plates with point-supports using static beam functions. Compos Struct 44(2–3):145–154. doi:10.1016/S0263-8223(98)00122-6

    Google Scholar 

  42. Cheung YK, Zhou D (2000a) Vibrations of moderately thick rectangular plates in terms of a set of static Timoshenko beam functions. Comput Struct 78(6):757–768. doi:10.1016/S0045-7949(00)00058-4

    Google Scholar 

  43. Cheung YK, Zhou D (2000b) Vibrations of rectangular plates with elastic intermediate line-supports and edge constraints. Thin Wall Struct 37(4):305–331. doi:10.1016/S0263-8231(00)00015-X

    Google Scholar 

  44. Cheung YK, Zhou D (2001a) Free vibrations of rectangular unsymmetrically laminated composite plates with internal line supports. Comput Struct 79(20–21):1923–1932. doi:10.1016/S0045-7949(01)00096-7

    Google Scholar 

  45. Cheung YK, Zhou D (2001b) Vibration analysis of symmetrically laminated rectangular plates with intermediate line supports. Comput Struct 79(1):33–41. doi:10.1016/S0045-7949(00)00108-5

    Google Scholar 

  46. Cheung YK, Zhou D (2003) Vibration of tapered Mindlin plates in terms of static Timoshenko beam functions. J Sound Vib 260(4):693–709. doi:10.1016/S0022-460X(02)01008-8

    Google Scholar 

  47. Chiba M, Sugimoto T (2003) Vibration characteristics of a cantilever plate with attached spring-mass system. J Sound Vib 260(2):237–263. doi:10.1016/S0022-460X(02)00921-5

    Google Scholar 

  48. Ciancio PM, Rossit CA, Laura PAA (2007) Approximate study of the free vibrations of a cantilever anisotropic plate carrying a concentrated mass. J Sound Vib 302(3):621–628. doi:10.1016/j.jsv.2006.11.027

    Google Scholar 

  49. Courant R (1943) Variational methods for the solution of problems of equilibrium and vibrations. Bull Am Math Soc 49(1):1–23. doi:10.1090/S0002-9904-1943-07818-4

    MathSciNet  MATH  Google Scholar 

  50. Cupial P (1997) Calculation of the natural frequencies of composite plates by the Rayleigh-Ritz method with orthogonal polynomials. J Sound Vib 201(3):385–387. doi:10.1006/jsvi.1996.0802

    Google Scholar 

  51. Dasgupta A, Huang KH (1997) A layer-wise analysis for free vibrations of thick composite spherical panels. J Compos Mater 31(7):658–671. doi:10.1177/002199839703100702

    Google Scholar 

  52. Deobald LR, Gibson RF (1988) Determination of elastic constants of orthotropic plates by a modal analysis/Rayleigh-Ritz technique. J Sound Vib 124(2):269–283. doi:10.1016/S0022-460X(88)80187-1

    Google Scholar 

  53. Dickinson SM (1978) The buckling and frequency of flexural vibration of rectangular isotropic and orthotropic plates using Rayleigh’s method. J Sound Vib 61(1):1–8. doi:10.1016/0022-460X(78)90036-6

    MATH  Google Scholar 

  54. Dickinson SM, Di Blasio A (1986) On the use of orthogonal polynomials in the Rayleigh-Ritz method for the study of the flexural vibration and buckling of isotropic and orthotropic rectangular plates. J Sound Vib 108(1):51–62. doi:10.1016/S0022-460X(86)80310-8

    MATH  Google Scholar 

  55. Dickinson SM, Li EKH (1982) On the use of simply supported plate functions in the Rayleigh-Ritz method applied to the flexural vibration of rectangular plates. J Sound Vib 80(2):292–297. doi:10.1016/0022-460X(82)90199-7

    Google Scholar 

  56. Dowell EH (1984) On asymptotic approximations to beam model shapes. J Appl Mech 51(2):439. doi:10.1115/1.3167639

    Google Scholar 

  57. Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocations and surface waves. J Appl Phys 54(9):4703–4710. doi:10.1063/1.332803

    Google Scholar 

  58. Eringen AC, Edelen DGB (1972) On nonlocal elasticity. Int J Eng Sci 10:233–248

    MathSciNet  MATH  Google Scholar 

  59. Fasana A, Marchesiello S (2001) Rayleigh-Ritz analysis of sandwich beams. J Sound Vib 241(4):643–652. doi:10.1006/jsvi.2000.3311

    Google Scholar 

  60. Felgar RP (1950) Formulas for integrals containing characteristic functions of a vibrating beam. Tech. rep., University of Texas. Bureau of Engineering Research. Circular

  61. Frederiksen PS (1995) Single-layer plate theories applied to the flexural vibration of completely free thick laminates. J Sound Vib 186(5):743–759. doi:10.1006/jsvi.1995.0486

    MATH  Google Scholar 

  62. Gallego A, Moreno-García P, Casanova CF (2013) Modal analysis of delaminated composite plates using the finite element method and damage detection via combined Ritz/2D-wavelet analysis. J Sound Vib 332(12):2971–2983. doi:10.1016/j.jsv.2013.01.012

    Google Scholar 

  63. Gander M, Kwok F (2012) Chladni figures and the Tacoma bridge: motivating PDE eigenvalue problems via vibrating plates. SIAM Rev 54(3):573–596. doi:10.1137/10081931X

    MathSciNet  MATH  Google Scholar 

  64. Gander M, Wanner G (2012) From Euler, Ritz, and Galerkin to modern computing. SIAM Rev 54(4):627–666. doi:10.1137/100804036

    MathSciNet  MATH  Google Scholar 

  65. Ganesan N, Engels RC (1992) Hierarchical Bernoulli-Euler beam finite elements. Comput Struct 43(2):297–304. doi:10.1016/0045-7949(92)90146-Q

    MATH  Google Scholar 

  66. Gartner JR, Cobb EC (1988) Natural frequencies and biplanar response of generalized rotating spindle systems. Robot Cim-Int Manuf 4(1–2):165–174. doi:10.1016/0736-5845(88)90073-7

    Google Scholar 

  67. Gartner JR, Olgac N (1982) Improved numerical computation of uniform beam characteristic values and characteristic functions. J Sound Vib 84(2):481–489. doi:10.1016/S0022-460X(82)80029-1

    Google Scholar 

  68. Gaul L (2014) From Newton’s principia via Lord Rayleigh’s theory of sound to finite elements. In: Stein E (ed) The history of theoretical, material and computational mechanics - mathematics meets mechanics and engineering. Lecture notes in applied mathematics and mechanics, vol 1. Springer, Berlin, pp 385–398. doi:10.1007/978-3-642-39905-3_21

  69. Grossi RO, Bhat RB (1995) Natural frequencies of edge restrained tapered rectangular plates. J Sound Vib 185(2):335–343. doi:10.1006/jsvi.1995.0382

    MATH  Google Scholar 

  70. Hearmon RFS (1959) The frequency of flexural vibration of rectangular orthotropic plates with clamped or supported edges. J Appl Mech 26(4):537–540

    MathSciNet  MATH  Google Scholar 

  71. Hosseini-Hashemi S, Karimi M, Rokni DH (2010) Hydroelastic vibration and buckling of rectangular Mindlin plates on Pasternak foundations under linearly varying in-plane loads. Soil Dyn Earthq Eng 30(12):1487–1499. doi:10.1016/j.soildyn.2010.06.019

    Google Scholar 

  72. Hosseini-Hashemi S, Karimi M, Taher HRD (2010b) Vibration analysis of rectangular Mindlin plates on elastic foundations and vertically in contact with stationary fluid by the Ritz method. Ocean Eng 37(2–3):174–185. doi:10.1016/j.oceaneng.2009.12.001

    Google Scholar 

  73. Hu XX, Sakiyama T, Lim CW, Xiong Y, Matsuda H, Morita C (2004) Vibration of angle-ply laminated plates with twist by Rayleigh-Ritz procedure. Comput Method Appl M 193(9–11):805–823. doi:10.1016/j.cma.2003.08.003

    MATH  Google Scholar 

  74. Huang CS, Leissa AW (2009) Vibration analysis of rectangular plates with side cracks via the Ritz method. J Sound Vib 323(3–5):974–988. doi:10.1016/j.jsv.2009.01.018

    Google Scholar 

  75. Huang CS, Leissa AW, Chan CW (2011) Vibrations of rectangular plates with internal cracks or slits. Int J Mech Sci 53(6):436–445. doi:10.1016/j.ijmecsci.2011.03.006

    Google Scholar 

  76. Huang CS, Leissa AW, Li RS (2011b) Accurate vibration analysis of thick, cracked rectangular plates. J Sound Vib 330(9):2079–2093. doi:10.1016/j.jsv.2010.11.007

    Google Scholar 

  77. Huang CS, McGee OG III, Chang MJ (2011) Vibrations of cracked rectangular FGM thick plates. Compos Struct 93(7):1747–1764. doi:10.1016/j.compstruct.2011.01.005

    Google Scholar 

  78. Huang CS, Yang PJ, Chang MJ (2012) Three-dimensional vibration analyses of functionally graded material rectangular plates with through internal cracks. Compos Struct 94(9):2764–2776. doi:10.1016/j.compstruct.2012.04.003

    Google Scholar 

  79. Huang CS, McGee OG III, Wang KP (2013) Three-dimensional vibrations of cracked rectangular parallelepipeds of functionally graded material. Int J Mech Sci 70:1–25. doi:10.1016/j.ijmecsci.2012.05.009

    Google Scholar 

  80. van Hulzen JR, Schitter G, den Hof PMJV, van Eijk J (2012) Dynamics, load balancing, and modal control of piezoelectric tube actuators. Mechatron 22(3):282–294. doi:10.1016/j.mechatronics.2011.10.003

    Google Scholar 

  81. Ilanko S (2009) Comments on “The historical bases of the Rayleigh and Ritz methods”. J Sound Vib 319(1–2):731–733. doi:10.1016/j.jsv.2008.06.001

    Google Scholar 

  82. Ip KH, Tse PC, Lai TC (1998) Material characterization for orthotropic shells using modal analysis and Rayleigh-Ritz models. Compos Part B 29(4):397–409. doi:10.1016/S1359-8368(97)00037-1

    Google Scholar 

  83. Isvandzibaei MR, Jamaluddin H, Raja Hamzah R (2014) Frequency analysis of multiple layered cylindrical shells under lateral pressure with asymmetric boundary conditions. Chinese J Mech Eng 27(1):23–31. doi:10.3901/CJME.2014.01.023

    Google Scholar 

  84. Jeong KH, Kang HS (2013) Free vibration of multiple rectangular plates coupled with a liquid. Int J Mech Sci 74:161–172. doi:10.1016/j.ijmecsci.2013.05.011

    Google Scholar 

  85. Kato Y, Honma T (1998) The Rayleigh-Ritz solution to estimate vibration characteristics of building floors. J Sound Vib 211(2):195–206. doi:10.1006/jsvi.1997.1362

    Google Scholar 

  86. Kim CS, Young PG, Dickinson SM (1990) On the flexural vibration of rectangular plates approached by using simple polynomials in the Rayleigh-Ritz method. J Sound Vib 143(3):379–394. doi:10.1016/0022-460X(90)90730-N

    Google Scholar 

  87. Kim YW (2005) Temperature dependent vibration analysis of functionally graded rectangular plates. J Sound Vib 284(3–5):531–549. doi:10.1016/j.jsv.2004.06.043

    Google Scholar 

  88. Kollar LP, Veres IA (2001) Buckling of rectangular orthotropic plates subjected to biaxial normal forces. J Compos Mater 35(7):625–635. doi:10.1177/002199801772662109

    Google Scholar 

  89. Kong S (2013) Size effect on pull-in behavior of electrostatically actuated microbeams based on a modified couple stress theory. Appl Math Model 37(12–13):7481–7488. doi:10.1016/j.apm.2013.02.024

    MathSciNet  Google Scholar 

  90. Kwak MK, Koo JR, Bae CH (2011) Free vibration analysis of a hung clamped-free cylindrical shell partially submerged in fluid. J Fluid Struct 27(2):283–296. doi:10.1016/j.jfluidstructs.2010.11.005

    Google Scholar 

  91. Lai TC, Ip KH (1996) Parameter estimation of orthotropic plates by bayesian sensitivity analysis. Compos Struct 34(1):29–42. doi:10.1016/0263-8223(95)00128-X

    Google Scholar 

  92. Lam KY, Amrutharaj G (1995) Natural frequencies of rectangular stepped plates using polynomial beam functions with subsectioning. Appl Acoust 44(4):325–340. doi:10.1016/0003-682X(94)00030-Y

    Google Scholar 

  93. Lam KY, Chun L (1994) Analysis of clamped laminated plates subjected to conventional blast. Compos Struct 29(3):311–321. doi:10.1016/0263-8223(94)90027-2

    Google Scholar 

  94. Lam KY, Hung KC (1990) Vibration study on plates with stiffened openings using orthogonal polynomials and partitioning method. Comput Struct 37(3):295–301. doi:10.1016/0045-7949(90)90321-R

    Google Scholar 

  95. Lam KY, Loy CT (1995) Effects of boundary conditions on frequencies of a multi-layered cylindrical shell. J Sound Vib 188(3):363–384. doi:10.1006/jsvi.1995.0599

    Google Scholar 

  96. Lam KY, Hung KC, Chow ST (1989) Vibration analysis of plates with cutouts by the modified Rayleigh-Ritz method. Appl Acoust 28(1):49–60. doi:10.1016/0003-682X(89)90030-3

    Google Scholar 

  97. Lee D-C, Wang C-S, Lee L-T (2011) The natural frequency of elastic plates with void by Ritz-method. Stud in Math Sci 2(1):36–50. doi:10.3968/j.sms.1923845220120201.009

    Google Scholar 

  98. Lee LT, Lee DC (1997) Free vibration of rectangular plates on elastic point supports with the application of a new type of admissible function. Comput Struct 65(2):149–156. doi:10.1016/S0045-7949(96)00426-9

    MATH  Google Scholar 

  99. Leissa AW (1973) The free vibration of rectangular plates. J Sound Vib 31(3):257–293. doi:10.1016/S0022-460X(73)80371-2

    MATH  Google Scholar 

  100. Leissa AW (2005) The historical bases of the Rayleigh and Ritz methods. J Sound Vib 287(45):961–978. doi:10.1016/j.jsv.2004.12.021

    Google Scholar 

  101. Leissa AW, Shihada SM (1995) Convergence of the Ritz method. Appl Mech Rev 48(11S):S90–S95. doi:10.1115/1.3005088

    Google Scholar 

  102. Leung AYT (1988) Integration of beam functions. Comput Struct 29(6):1087–1094. doi:10.1016/0045-7949(88)90332-X

    MATH  Google Scholar 

  103. Leung AYT (1990) Recurrent integration of beam functions. Comput Struct 37(3):277–282. doi:10.1016/0045-7949(90)90319-W

    Google Scholar 

  104. Liew KM, Hung KC, Lim MK (1993a) Method of domain decomposition in vibrations of mixed edge anisotropic plates. Int J Solids Struct 30(23):3281–3301. doi:10.1016/0020-7683(93)90114-M

    MATH  Google Scholar 

  105. Liew KM, Hung KC, Lim MK (1993b) Roles of domain decomposition method in plate vibrations: Treatment of mixed discontinuous periphery boundaries. Int J Mech Sci 35(7):615–632. doi:10.1016/0020-7403(93)90005-F

    MATH  Google Scholar 

  106. Liew KM, Hung KC, Lim MK (1994) On the use of the domain decomposition method for vibration of symmetric laminates having discontinuities at the same edge. J Sound Vib 178(2):243–264. doi:10.1006/jsvi.1994.1481

    Google Scholar 

  107. Liew KM, Hung KC, Lim MK (1995) Vibration of Mindlin plates using boundary characteristic orthogonal polynomials. J Sound Vib 182(1):77–90. doi:10.1006/jsvi.1995.0183

    Google Scholar 

  108. Lim SP, Senthilnathan NR, Lee KH (1989) Rayleigh-Ritz vibration analysis of thick plates by a simple higher order theory. J Sound Vib 130(1):163–166. doi:10.1016/0022-460X(89)90527-0

    MATH  Google Scholar 

  109. Rayleigh L (1911) XXIV. On the calculation of Chladni’s figures for a square plate. Philos Mag 22(128):225–229. doi:10.1080/14786440808637121

    MATH  Google Scholar 

  110. Low KH, Chai GB, Ng CK (1993a) Experimental and analytical study of the frequencies of an S-C-S-C plate carrying a concentrated mass. J Vib Acoust 115(4):391–396. doi:10.1115/1.2930362

    Google Scholar 

  111. Low KH, Lim TM, Chai GB (1993b) Experimental and analytical investigations of vibration frequencies for centre-loaded beams. Comput Struct 48(6):1157–1162. doi:10.1016/0045-7949(93)90448-M

    Google Scholar 

  112. Low KH, Chai GB, Tan GS (1997) A comparative study of vibrating loaded plates between the Rayleigh-Ritz and experimental methods. J Sound Vib 199(2):285–297. doi:10.1006/jsvi.1996.0633

    Google Scholar 

  113. Low KH, Chai GB, Lim TM, Sue SC (1998) Comparisons of experimental and theoretical frequencies for rectangular plates with various boundary conditions and added masses. Int J Mech Sci 40(11):1119–1131. doi:10.1016/S0020-7403(98)00013-7

    MATH  Google Scholar 

  114. Loy CT, Lam KY (1997) Vibration of cylindrical shells with ring support. Int J Mech Sci 39(4):455–471. doi:10.1016/S0020-7403(96)00035-5

    MATH  Google Scholar 

  115. Maheri MR, Adams RD (2003) Modal vibration damping of anisotropic FRP laminates using the Rayleigh-Ritz energy minimization scheme. J Sound Vib 259:17–29. doi:10.1006/jsvi.2002.5151

    Google Scholar 

  116. Meleshko VV (1997) Bending of an elastic rectangular clamped plate: exact versus ‘engineering’ solutions. J Elast 48(1):1–50. doi:10.1023/A:1007472709175

    MathSciNet  MATH  Google Scholar 

  117. Messina A, Soldatos KP (1999) Ritz-type dynamic analysis of cross-ply laminated circular cylinders subjected to different boundary conditions. J Sound Vib 227(4):749–768. doi:10.1006/jsvi.1999.2347

    MATH  Google Scholar 

  118. Morales CA, Ramírez JF (2002) Further simplest-expression integrals involving beam eigenfunctions and derivatives. J Sound Vib 253(2):518–522. doi:10.1006/jsvi.2001.4011

    Google Scholar 

  119. Moreno-García P (2012) Simulación y ensayos de vibraciones en placas de material compuesto de fibra de carbono y detección de daño mediante la respuesta en frecuencia y la transformada wavelet. PhD thesis, Universidad de Granada, Spain. http://hdl.handle.net/10481/23283 (in Spanish)

  120. Moreno-García P, Castro E, Romo-Melo L, Gallego A, Roldán A (2012) Vibration tests in CFRP plates for damage detection via non-parametric signal analysis. Shock Vib 19(5):857–865. doi:10.1155/2012/385835

    Google Scholar 

  121. Moreno-García P, Lopes H, Araújo dos Santos JV, Maia NMM (2012b) Damage localisation in composite laminated plates using higher order spatial derivatives. In: Topping B (ed) Proceedings of the eleventh international conference on computational structures technology. Civil-Comp Press, Stirlingshire, UK. doi:10.4203/ccp.99.75

  122. Moreno-García P, Araújo dos Santos JV, Lopes H (2014) A new technique to optimize the use of mode shape derivatives to localize damage in laminated composite plates. Compos Struct 108:548–554. doi:10.1016/j.compstruct.2013.09.050

    Google Scholar 

  123. Moreno-García P, Lopes H, Araújo dos Santos JV (2015) Application of higher order finite differences to damage localization in laminated composite plates. Compos Struct. doi:10.1016/j.compstruct.2015.08.011

  124. Muthukumaran P, Bhat R, Stiharu I (1999) Boundary conditioning technique for structural tuning. J Sound Vib 220(5):847–859. doi:10.1006/jsvi.1998.1991

    Google Scholar 

  125. Muthukumaran P, Demirli K, Stiharu I, Bhat R (2000) Boundary conditioning for structural tuning using fuzzy logic approach. Comput Struct 74(5):547–557. doi:10.1016/S0045-7949(99)00063-2

    Google Scholar 

  126. Nallim LG, Grossi RO (2003) On the use of orthogonal polynomials in the study of anisotropic plates. J Sound Vib 264(5):1201–1207. doi:10.1016/S0022-460X(02)01523-7

    Google Scholar 

  127. Nallim LG, Oller S (2008) An analytical-numerical approach to simulate the dynamic behaviour of arbitrarily laminated composite plates. Compos Struct 85(4):311–325. doi:10.1016/j.compstruct.2007.10.031

    Google Scholar 

  128. Nallim LG, Martinez SO, Grossi RO (2005) Statical and dynamical behaviour of thin fibre reinforced composite laminates with different shapes. Comput Method Appl Mech Eng 194(17):1797–1822. doi:10.1016/j.cma.2004.06.009

    MATH  Google Scholar 

  129. Oosterhout G, van der Hoogt P, Spiering R (1995) Accurate calculation methods for natural frequencies of plates with special attention to the higher modes. J Sound Vib 183(1):33–47. doi:10.1006/jsvi.1995.0237

    MATH  Google Scholar 

  130. Pandey MD, Sherbourne AN (1991) Buckling of anisotropic composite plates under stress gradient. J Eng Mech-ASCE 117(2):260–275. doi:10.1061/(ASCE)0733-9399(1991) 117:2(260)

    Google Scholar 

  131. Pandey MD, Sherbourne AN (1993) Stability analysis of inhomogeneous, fibrous composite plates. Int J Solids Struct 30(1):37–60. doi:10.1016/0020-7683(93)90131-P

    MATH  Google Scholar 

  132. Pao YC, Peterson KA (1988) Contour-plot simulation of vibrational and buckling mode shapes of composite plates. J Compos Mater 22(10):935–954. doi:10.1177/002199838802201003

    Google Scholar 

  133. Parashar SK, Kumar A (2015) Three-dimensional analytical modeling of vibration behavior of piezoceramic cylindrical shells. Arch Appl Mech 85(5):641–656. doi:10.1007/s00419-014-0977-0

    Google Scholar 

  134. Pirnat M, Cepon G, Boltezar M (2014) Structural-acoustic model of a rectangular plate-cavity system with an attached distributed mass and internal sound source: theory and experiment. J Sound Vib 333(7):2003–2018. doi:10.1016/j.jsv.2013.11.044

    Google Scholar 

  135. Plunkett R (1963) Natural frequencies of uniform and non-uniform rectangular cantilever plates. J Mech Eng Sci 5(2):146–156. doi:10.1243/JMES_JOUR_1963_005_020_02

    Google Scholar 

  136. Rango RF, Bellomo FJ, Nallim LG (2015) A variational Ritz formulation for vibration analysis of thick quadrilateral laminated plates. Int J Mech Sci 104:60–74. doi:10.1016/j.ijmecsci.2015.09.018

    Google Scholar 

  137. Reddy JN (1984) A simple higher-order theory for laminated composite plates. J Appl Mech 51(4):745–752. doi:10.1115/1.3167719

    MATH  Google Scholar 

  138. Rinaldi G, Packirisamy M, Stiharu I (2006) Boundary characterization of microstructures through thermo-mechanical testing. J Micromech Microeng 16(3):549. doi:10.1088/0960-1317/16/3/010

    Google Scholar 

  139. Rinaldi G, Packirisamy M, Stiharu I (2007) Quantitative boundary support characterization for cantilever MEMS. Sensors 7(10):2062–2079. doi:10.3390/s7102062

    Google Scholar 

  140. Rinaldi G, Packirisamy M, Stiharu I (2008) Boundary characterization of MEMS structures through electro-mechanical testing. Sensor Actuat A-Phys 143(2):415–422. doi:10.1016/j.sna.2007.08.032

    Google Scholar 

  141. Ritz W (1909a) Theorie der transversalschwingungen einer quadratische platte mit freien rändern. Ann Phys-Leipzig 333(4):737–786. doi:10.1002/andp.19093330403

    MATH  Google Scholar 

  142. Ritz W (1909) Über eine neue methode zur lösung gewisser variationsprobleme der mathematischen physik. J Reine Angew Math 135:1–61. doi:10.1515/crll.1909.135.1

    MathSciNet  MATH  Google Scholar 

  143. Rouhi H, Bazdid-Vahdati M, Ansari R (2015) Rayleigh-Ritz vibrational analysis of multiwalled carbon nanotubes based on the nonlocal Flugge shell theory. J Compos 2015:11. doi:10.1155/2015/750392

    Google Scholar 

  144. Araújo dos Santos JV, Reddy JN (2012) Free vibration and buckling analysis of beams with a modified couple-stress theory. Int J Appl Mech 4(3):1250,026. doi:10.1142/S1758825112500263

    Google Scholar 

  145. Savoye P (2011) On the benefits of exposing mathematics majors to the Rayleigh-Ritz procedure. PRIMUS 21(6):554–566. doi:10.1080/10511970903474455

    Google Scholar 

  146. Sharma CB (1978) Calculation of integrals involving characteristic beam functions. J Sound Vib 56(4):475–480. doi:10.1016/0022-460X(78)90289-4

    MATH  Google Scholar 

  147. Smith ST, Bradford MA, Oehlers DJ (1999) Numerical convergence of simple and orthogonal polynomials for the unilateral plate buckling problem using the Rayleigh-Ritz method. Int J Numer Meth Eng 44(11):1685–1707

    MATH  Google Scholar 

  148. Soldatos KP, Messina A (1998) Vibration studies of cross-ply laminated shear deformable circular cylinders on the basis of orthogonal polynomials. J Sound Vib 218(2):219–243. doi:10.1006/jsvi.1998.1769

    MATH  Google Scholar 

  149. Soldatos KP, Messina A (2001) The influence of boundary conditions and transverse shear on the vibration of angle-ply laminated plates, circular cylinders and cylindrical panels. Comput Method Appl Mech Eng 190(18–19):2385–2409. doi:10.1016/S0045-7825(00)00242-5

    MATH  Google Scholar 

  150. Song X, Han Q, Zhai J (2015) Vibration analyses of symmetrically laminated composite cylindrical shells with arbitrary boundaries conditions via rayleigh-ritz method. Compos Struct 134:820–830. doi:10.1016/j.compstruct.2015.08.134

    Google Scholar 

  151. Song X, Zhai J, Chen Y, Han Q (2015) Traveling wave analysis of rotating cross-ply laminated cylindrical shells with arbitrary boundaries conditions via rayleigh-ritz method. Compos Struct 133:1101–1115. doi:10.1016/j.compstruct.2015.08.015

    Google Scholar 

  152. Sun S, Cao D, Han Q (2013) Vibration studies of rotating cylindrical shells with arbitrary edges using characteristic orthogonal polynomials in the rayleigh-ritz method. Int J Mech Sci 68:180–189. doi:10.1016/j.ijmecsci.2013.01.013

    Google Scholar 

  153. Timoshenko S (1937) Vibration problems in engineering, 2nd edn. D. Van Nostrand Company Inc, New York

    MATH  Google Scholar 

  154. Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells. McGraw-Hill, Auckland

    MATH  Google Scholar 

  155. Warburton GB (1954) The vibration of rectangular plates. P I Mech Eng 168(1):371–384. doi:10.1243/PIME_PROC_1954_168_040_02

    MathSciNet  Google Scholar 

  156. Warburton GB, Edney SL (1984) Vibrations of rectangular plates with elastically restrained edges. J Sound Vib 95(4):537–552. doi:10.1016/0022-460X(84)90236-0

    MATH  Google Scholar 

  157. Williamson F Jr (1980) Richard Courant and the finite element method: a further look. Hist Math 7(4):369–378. doi:10.1016/0315-0860(80)90001-4

    MathSciNet  MATH  Google Scholar 

  158. Yang F, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39(10):2731–2743. doi:10.1016/S0020-7683(02)00152-X

    MATH  Google Scholar 

  159. Yoon H, Youn BD, Kim HS (2016) Kirchhoff plate theory-based electromechanically-coupled analytical model considering inertia and stiffness effects of a surface-bonded piezoelectric patch. Smart Mater Struct 25(2):025,017. doi:10.1088/0964-1726/25/2/025017

    Google Scholar 

  160. Young D (1950) Vibration of rectangular plates by the Ritz method. J Appl Mech 17(4):448–453

    MATH  Google Scholar 

  161. Young D, Felgar RP (1949) Tables of characteristic functions representing normal modes of vibration of a beam. Tech. rep., Engineering Research Series, No.44, University of Texas, Austin, Texas. http://hdl.handle.net/2152/6001

  162. Young PG (2000) Application of a three-dimensional shell theory to the free vibration of shells arbitrarily deep in one direction. J Sound Vib 238(2):257–269. doi:10.1006/jsvi.2000.3103

    Google Scholar 

  163. Young PG, Dickinson SM (1993) On the free flexural vibration of rectangular plates with straight or curved internal line supports. J Sound Vib 162(1):123–135. doi:10.1006/jsvi.1993.1106

    MATH  Google Scholar 

  164. Zhou D (1994) The application of a type of new admissible function to the vibration of rectangular plates. Comput Struct 52(2):199–203. doi:10.1016/0045-7949(94)90272-0

    MATH  Google Scholar 

  165. Zhou D (1995) Natural frequencies of elastically restrained rectangular plates using a set of static beam functions in the Rayleigh-Ritz method. Comput Struct 57(4):731–735. doi:10.1016/0045-7949(95)00066-P

    MathSciNet  MATH  Google Scholar 

  166. Zhou D (1996) Natural frequencies of rectangular plates using a set of static beam functions in Rayleigh-Ritz method. J Sound Vib 189(1):81–87. doi:10.1006/jsvi.1996.0006

    MATH  Google Scholar 

  167. Zhou D (2001) Vibrations of Mindlin rectangular plates with elastically restrained edges using static Timoshenko beam functions with the Rayleigh-Ritz method. Int J Solids Struct 38(32–33):5565–5580. doi:10.1016/S0020-7683(00)00384-X

    MATH  Google Scholar 

  168. Zhou D (2002) Vibrations of point-supported rectangular plates with variable thickness using a set of static tapered beam functions. Int J Mech Sci 44(1):149–164. doi:10.1016/S0020-7403(01)00081-9

    MathSciNet  MATH  Google Scholar 

  169. Zhou D, Cheung YK (2000a) The free vibration of a type of tapered beams. Comput Method Appl M 188(1–3):203–216. doi:10.1016/S0045-7825(99)00148-6

    MATH  Google Scholar 

  170. Zhou D, Cheung YK (2000b) Vibrations of tapered Timoshenko beams in terms of static Timoshenko beam functions. J Appl Mech 68(4):596–602. doi:10.1115/1.1357164

    MATH  Google Scholar 

  171. Zhou D, Lo SH, Au FTK, Cheung YK (2002) Vibration analysis of rectangular Mindlin plates with internal line supports using static Timoshenko beam functions. Int J Mech Sci 44(12):2503–2522. doi:10.1016/S0020-7403(02)00188-1

    MATH  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the financial support of FCOMP-01-0124-FEDER-010236 through Project Ref. FCT—Portugal PTDC/EME-PME/102095/2008 and Junta de Andalucía—Spain (Project of Excellence No. P11-TEP-7093). This work was also supported by FCT—Portugal, through IDMEC, under LAETA, project UID/EMS/50022/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Moreno-García.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

This Appendix presents the plots of admissible functions with \(m=1, 2, 10\) and 15 (Figs. 13, 14, 15, 16, 17 and 18). We see that the shapes of the functions with \(m=1\) and 2 are very similar (with the exception of the Non-Orthogonal Polynomials), but for \(m=10\) and 15 the shape varies substantially. It is also clear a breakdown of the Characteristic Function with \(m=15\) for large values of x (Fig. 13d). The symmetry of the Orthogonal Polynomials is lost for values of \(m>7\).

Fig. 13
figure 13

Characteristic functions: (a) \(m = 1\), (b) \(m=2\), (c) \(m=10\), and (d) \(m=15\)

Fig. 14
figure 14

Modified characteristic functions: (a) \(m = 1\), (b) \(m=2\), (c) \(m=10\), and (d) \(m=15\)

Fig. 15
figure 15

Orthogonal polynomials: (a) \(m = 1\), (b) \(m=2\), (c) \(m=10\), and (d) \(m=15\)

Fig. 16
figure 16

Non-orthogonal polynomials: (a) \(m = 1\), (b) \(m=2\), (c) \(m=10\), and (d) \(m=15\)

Fig. 17
figure 17

Product of trigonometric functions: (a) \(m = 1\), (b) \(m=2\), (c) \(m=10\), and (d) \(m=15\)

Fig. 18
figure 18

Static beam functions: (a) \(m = 1\), (b) \(m=2\), (c) \(m=10\), and (d) \(m=15\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno-García, P., dos Santos, J.V.A. & Lopes, H. A Review and Study on Ritz Method Admissible Functions with Emphasis on Buckling and Free Vibration of Isotropic and Anisotropic Beams and Plates. Arch Computat Methods Eng 25, 785–815 (2018). https://doi.org/10.1007/s11831-017-9214-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-017-9214-7

Navigation