Skip to main content
Log in

Coriolis effects on the thermo-mechanical vibration analysis of the rotating multilayer piezoelectric nanobeam

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this study, the Coriolis effects on the vibration behavior of the multilayer rotating piezoelectric nanobeam are investigated. The governing equations are obtained using the nonlocal continuum and surface elasticity theories. The axial and transverse governing equations are influenced by the Coriolis effects. The differential quadrature method (DQM) is applied to obtain the vibration frequencies of the multilayer piezoelectric nanobeams. A good correlation is obtained between the numerical results and the results presented in available literature. The influences of the different boundary conditions and the thermal change in the vibration behavior of multilayer piezoelectric nanobeams are studied. The present work shows that the Coriolis effects strongly affect the vibration behavior of multilayer piezoelectric nanobeams. The numerical results show that the Coriolis effects under the flexible boundary conditions are more significant than rigid boundary conditions. The results of this study can be used to design and manufacture nanosensors, biosensors, atomic force microscopes, nanoelectromechanical systems, and micro-electromechanical systems (NEMS/MEMS) devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mei, J., Li, L.: Frequency self-tuning of ZnO nanoresonator. Physica E 46, 206–212 (2012). https://doi.org/10.1016/j.physe.2012.09.020

    Article  Google Scholar 

  2. Sun, C., Shi, J., Wang, X.: Fundamental study of mechanical energy harvesting using piezoelectric nanostructures. J. Appl. Phys. 108(3), 034309 (2010). https://doi.org/10.1063/1.3462468

    Article  Google Scholar 

  3. Tanner, S.M., Gray, J.M., Rogers, C.T., Bertness, K.A., Sanford, N.A.: High-Q GaN nanowire resonators and oscillators. Appl. Phys. Lett. 91(20), 203117 (2007). https://doi.org/10.1063/1.2815747

    Article  Google Scholar 

  4. Sinha, N., Wabiszewski, G.E., Mahameed, R., Felmetsger, V.V., Tanner, S.M., Carpick, R.W., Piazza, G.: Piezoelectric aluminum nitride nanoelectromechanical actuators. Appl. Phys. Lett. 95(5), 053106 (2009). https://doi.org/10.1063/1.3194148

    Article  Google Scholar 

  5. Briscoe, J., Jalali, N., Woolliams, P., Stewart, M., Weaver, P.M., Cain, M., Dunn, S.: Measurement techniques for piezoelectric nanogenerators. Energy Environ. Sci. 6(10), 3035–3045 (2013). https://doi.org/10.1039/C3EE41889H

    Article  Google Scholar 

  6. Fang, X.Q., Liu, J.X., Gupta, V.: Fundamental formulations and recent achievements in piezoelectric nano-structures: a review. Nanoscale 5(5), 1716–1726 (2013). https://doi.org/10.1039/c2nr33531j

    Article  Google Scholar 

  7. Kim, S., Kim, H.M., Lee, Y.H.: Single nanobeam optical sensor with a high Q-factor and high sensitivity. Opt. Lett. 40(22), 5351–5354 (2015). https://doi.org/10.1364/ol.40.005351

    Article  Google Scholar 

  8. Yang, D., Tian, H., Ji, Y.: High-Q and high-sensitivity width-modulated photonic crystal single nanobeam air-mode cavity for refractive index sensing. Appl. Opt. 54(1), 1–5 (2015)

    Article  Google Scholar 

  9. Kim, S., Ahn, B.-H., Kim, J.-Y., Jeong, K.-Y., Kim, K.S., Lee, Y.-H.: Nanobeam photonic bandedge lasers. Opt. Expr. 19(24), 24055–24060 (2011)

    Article  Google Scholar 

  10. Shi, P., Du, H., Chau, F.S., Zhou, G., Deng, J.: Tuning the quality factor of split nanobeam cavity by nanoelectromechanical systems. Opt. Expr. 23(15), 19338–19347 (2015). https://doi.org/10.1364/oe.23.019338

    Article  Google Scholar 

  11. Eltaher, M.A., Agwa, M.A., Mahmoud, F.F.: Nanobeam sensor for measuring a zeptogram mass. Int. J. Mech. Mater. Des. 12(2), 211–221 (2016). https://doi.org/10.1007/s10999-015-9302-5

    Article  Google Scholar 

  12. Wong, E.W., Sheehan, P.E., Lieber, C.M.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science (New York NY) 277(5334), 1971–1975 (1997)

    Article  Google Scholar 

  13. Cuenot, S., Frétigny, C., Demoustier-Champagne, S., Nysten, B.: Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B 69(16), 165410 (2004)

    Article  Google Scholar 

  14. Jing, G.Y., Duan, H.L., Sun, X.M., Zhang, Z.S., Xu, J., Li, Y.D., Wang, J.X., Yu, D.P.: Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys. Rev. B 73(23), 235409 (2006)

    Article  Google Scholar 

  15. Zhang, J.-H., Mao, X.-L., Liu, Q.-Q., Gu, F., Li, M., Liu, H., Ge, Y.-X.: Mechanical properties of silicon nanobeams with an undercut evaluated by combining the dynamic resonance test and finite element analysis. Chin. Phys. B 21(8), 086101 (2012)

    Article  Google Scholar 

  16. Goodarzi, M., Mohammadi, M., Farajpour, A., Khooran, M.: Investigation of the effect of pre-stressed on vibration frequency of rectangular nanoplate based on a visco pasternak foundation. J. Solid Mech. 6, 98–121 (2014)

    Google Scholar 

  17. Demir, Ç., Civalek, Ö.: Torsional and longitudinal frequency and wave response of microtubules based on the nonlocal continuum and nonlocal discrete models. Appl. Math. Model. 37(22), 9355–9367 (2013). https://doi.org/10.1016/j.apm.2013.04.050

    Article  Google Scholar 

  18. Aydogdu, M.: A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration. Physica E 41(9), 1651–1655 (2009). https://doi.org/10.1016/j.physe.2009.05.014

    Article  Google Scholar 

  19. Mahmoud, F.F., Eltaher, M.A., Alshorbagy, A.E., Meletis, E.I.: Static analysis of nanobeams including surface effects by nonlocal finite element. J. Mech. Sci. Technol. 26(11), 3555–3563 (2012). https://doi.org/10.1007/s12206-012-0871-z

    Article  Google Scholar 

  20. Eltaher, M., Mahmoud, F., Assie, A., Meletis, E.: Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams. Appl. Math. Comput. 224, 760–774 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Akgöz, B., Civalek, Ö.: Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams. Int. J. Eng. Sci. 49(11), 1268–1280 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Akgöz, B., Civalek, Ö.: Free vibration analysis for single-layered graphene sheets in an elastic matrix via modified couple stress theory. Mater. Des. 42, 164–171 (2012)

    Article  Google Scholar 

  23. Akgöz, B., Civalek, Ö.: Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory. Compos. Struct. 98, 314–322 (2013)

    Article  Google Scholar 

  24. Akgöz, B., Civalek, Ö.: Modeling and analysis of micro-sized plates resting on elastic medium using the modified couple stress theory. Meccanica 48(4), 863–873 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Arani, A.G., Kolahchi, R., Mosayyebi, M., Jamali, M.: Pulsating fluid induced dynamic instability of visco-double-walled carbon nano-tubes based on sinusoidal strain gradient theory using DQM and Bolotin method. Int. J. Mech. Mater. Des. 25, 1–22 (2014)

    Google Scholar 

  26. Mohammadimehr, M., Navi, B.R., Arani, A.G.: Modified strain gradient Reddy rectangular plate model for biaxial buckling and bending analysis of double-coupled piezoelectric polymeric nanocomposite reinforced by FG-SWNT. Compos. B Eng. 87, 132–148 (2016)

    Article  Google Scholar 

  27. Akgöz, B., Civalek, Ö.: Bending analysis of embedded carbon nanotubes resting on an elastic foundation using strain gradient theory. Acta Astronaut. 119, 1–12 (2016). https://doi.org/10.1016/j.actaastro.2015.10.021

    Article  Google Scholar 

  28. Duan, W., Wang, C.M., Zhang, Y.: Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics. J. Appl. Phys. 101(2), 24305–24305 (2007)

    Article  Google Scholar 

  29. Nazemnezhad, R., Hosseini-Hashemi, S.: Free vibration analysis of multi-layer graphene nanoribbons incorporating interlayer shear effect via molecular dynamics simulations and nonlocal elasticity. Phys. Lett. A 378(44), 3225–3232 (2014)

    Article  MathSciNet  Google Scholar 

  30. Chen, Y., Lee, J.D., Eskandarian, A.: Atomistic viewpoint of the applicability of microcontinuum theories. Int. J. Solids Struct. 41(8), 2085–2097 (2004). https://doi.org/10.1016/j.ijsolstr.2003.11.030

    Article  MATH  Google Scholar 

  31. Liew, K.M., He, X., Kitipornchai, S.: Predicting nanovibration of multi-layered graphene sheets embedded in an elastic matrix. Acta Mater. 54(16), 4229–4236 (2006)

    Article  Google Scholar 

  32. He, X., Kitipornchai, S., Liew, K.: Resonance analysis of multi-layered graphene sheets used as nanoscale resonators. Nanotechnology 16(10), 2086 (2005)

    Article  Google Scholar 

  33. Pradhan, S., Phadikar, J.: Small scale effect on vibration of embedded multilayered graphene sheets based on nonlocal continuum models. Phys. Lett. A 373(11), 1062–1069 (2009)

    Article  MATH  Google Scholar 

  34. Ansari, R., Arash, B., Rouhi, H.: Vibration characteristics of embedded multi-layered graphene sheets with different boundary conditions via nonlocal elasticity. Compos. Struct. 93(9), 2419–2429 (2011)

    Article  Google Scholar 

  35. Karličić, D., Cajić, M., Murmu, T., Adhikari, S.: Nonlocal longitudinal vibration of viscoelastic coupled double-nanorod systems. Eur. J. Mech.-A/Solids 49, 183–196 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Karličić, D., Cajić, M., Murmu, T., Kozić, P., Adhikari, S.: Nonlocal effects on the longitudinal vibration of a complex multi-nanorod system subjected to the transverse magnetic field. Meccanica 50(6), 1605–1621 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Arda, M., Aydogdu, M.: Torsional statics and dynamics of nanotubes embedded in an elastic medium. Compos. Struct. 114, 80–91 (2014)

    Article  Google Scholar 

  38. Ghorbanpour-Arani, A., Rastgoo, A., Sharafi, M., Kolahchi, R., Arani, A.G.: Nonlocal viscoelasticity based vibration of double viscoelastic piezoelectric nanobeam systems. Meccanica 51(1), 25–40 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Karličić, D., Kozić, P., Pavlović, R.: Nonlocal vibration and stability of a multiple-nanobeam system coupled by the Winkler elastic medium. Appl. Math. Model. 40(2), 1599–1614 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yan, Z., Jiang, L.: Electromechanical response of a curved piezoelectric nanobeam with the consideration of surface effects. J. Phys. D Appl. Phys. 44(36), 365301 (2011)

    Article  Google Scholar 

  41. Atanackovic, T.M., Stankovic, B.: Generalized wave equation in nonlocal elasticity. Acta Mech. 208(1), 1–10 (2009). https://doi.org/10.1007/s00707-008-0120-9

    Article  MATH  Google Scholar 

  42. Di Paola, M., Failla, G., Pirrotta, A., Sofi, A., Zingales, M.: The mechanically based non-local elasticity: an overview of main results and future challenges. Phil. Trans. R. Soc. A: Math., Phys. Eng. Sci. 371, 1993 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Di Paola, M., Failla, G., Zingales, M.: Physically-based approach to the mechanics of strong non-local linear elasticity theory. J. Elast. 97(2), 103–130 (2009). https://doi.org/10.1007/s10659-009-9211-7

    Article  MathSciNet  MATH  Google Scholar 

  44. Liu, C., Ke, L.-L., Wang, Y.-S., Yang, J., Kitipornchai, S.: Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory. Compos. Struct. 106, 167–174 (2013)

    Article  Google Scholar 

  45. Mohammadi, M., Safarabadi, M., Rastgoo, A., Farajpour, A.: Hygro-mechanical vibration analysis of a rotating viscoelastic nanobeam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal environment. Acta Mech. 26, 1–26 (2016)

    MathSciNet  MATH  Google Scholar 

  46. Malekzadeh, P., Shojaee, M.: Surface and nonlocal effects on the nonlinear free vibration of non-uniform nanobeams. Compos. B Eng. 52, 84–92 (2013)

    Article  Google Scholar 

  47. Mohammadi, M., Goodarzi, M., Ghayour, M., Alivand, S.: Small scale effect on the vibration of orthotropic plates embedded in an elastic medium and under biaxial in-plane pre-load via nonlocal elasticity theory. J. Solid Mech. 4(2), 128–143 (2012)

    Google Scholar 

  48. Asemi, S., Farajpour, A., Asemi, H., Mohammadi, M.: Influence of initial stress on the vibration of double-piezoelectric-nanoplate systems with various boundary conditions using DQM. Physica E 63, 169–179 (2014)

    Article  Google Scholar 

  49. Danesh, M., Farajpour, A., Mohammadi, M.: Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method. Mech. Res. Commun. 39(1), 23–27 (2012)

    Article  MATH  Google Scholar 

  50. Farajpour, A., Shahidi, A., Mohammadi, M., Mahzoon, M.: Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics. Compos. Struct. 94(5), 1605–1615 (2012)

    Article  Google Scholar 

  51. Arani, A.G., Fereidoon, A., Kolahchi, R.: Nonlinear surface and nonlocal piezoelasticity theories for vibration of embedded single-layer boron nitride sheet using harmonic differential quadrature and differential cubature methods. J. Intell. Mater. Syst. Struct. 26(10), 1150–1163 (2015)

    Article  Google Scholar 

  52. Banerjee, J.R., Kennedy, D.: Dynamic stiffness method for in-plane free vibration of rotating beams including Coriolis effects. J. Sound Vib. 333(26), 7299–7312 (2014). https://doi.org/10.1016/j.jsv.2014.08.019

    Article  Google Scholar 

  53. Shenoy, V.B.: Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B 71(9), 094104 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank the reviewers for their comments and suggestions to improve the clarity of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mohammadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section, to clarify more, some extra equations for Eq. (35) are given. To this end, the mass, the damping, and the stiffness matrix are stated as

$$\left[ M \right] = \left[ {\begin{array}{*{20}l} {\begin{array}{*{20}l} {M_{11} } \\ {M_{21} } \\ {M_{31} } \\ \end{array} } & {\begin{array}{*{20}l} {M_{12} } \\ {M_{22} } \\ {M_{32} } \\ \end{array} } & {\begin{array}{*{20}l} {M_{13} } \\ {M_{23} } \\ {M_{33} } \\ \end{array} } \\ \end{array} } \right], \quad \left[ C \right] = \left[ {\begin{array}{*{20}l} {\begin{array}{*{20}l} {C_{11} } \\ {C_{21} } \\ {C_{31} } \\ \end{array} } & {\begin{array}{*{20}l} {C_{12} } \\ {C_{22} } \\ {C_{32} } \\ \end{array} } & {\begin{array}{*{20}l} {C_{13} } \\ {C_{23} } \\ {C_{33} } \\ \end{array} } \\ \end{array} } \right], \quad \left[ K \right] = \left[ {\begin{array}{*{20}l} {\begin{array}{*{20}l} {K_{11} } \\ {K_{21} } \\ {K_{31} } \\ \end{array} } & {\begin{array}{*{20}l} {K_{12} } \\ {K_{22} } \\ {K_{32} } \\ \end{array} } & {\begin{array}{*{20}l} {K_{13} } \\ {K_{23} } \\ {K_{33} } \\ \end{array} } \\ \end{array} } \right] .$$
(40)

The rows of the matrices are related to Eqs. (30a-c–32a-c). The nonzero elements of the matrices are given as

$$K_{{23}} = F_{{31}}^{*} \sum\limits_{{k = 1}}^{N} {C_{{ik}}^{2} } \left( \phi \right)_{{kj}},$$
$$K_{{32}} = - F_{{31}}^{*} \sum\limits_{{k = 3}}^{{N - 2}} {C_{{ik}}^{2} \left( W \right)_{{kj}} },$$
$$K_{33} = X_{11}^{*} \sum\limits_{k = 2}^{N - 1} {C_{ik}^{2} \left({\varvec{\varPhi}}\right)_{kj} } - X_{33}^{*} \left({\varvec{\varPhi}}\right)_{ij},$$
$${\tilde{K}}_{w} = \left\{ {\begin{array}{*{20}c} {K_{w} + K_{w}^{u} {\text{ for }}m = 1 {\text{ or the first layer}}} \\ {K_{w} {\text{ for }}m = 2, \dots, N - 1 {\text{ or the internal layers}}} \\ {K_{w} + K_{w}^{l} {\text{ for }}m = N {\text{ or the last layer}}} \end{array}} \right.$$
$${\tilde{K}}_{s} = \left\{ {\begin{array}{*{20}l}{K_{s} + K_{s}^{u} {\text{ for }}m = 1} \\ {K_{s} {\text{ for }}m = 2,\ldots, N - 1} \\ {K_{s} + K_{s}^{l} {\text{ for }}m = N} \end{array} } \right.$$
(41)

The other elements are zero.

$$\begin{gathered} M_{12} = M_{13} = M_{21} = M_{23} = M_{31} = M_{32} = M_{33} = 0, \hfill \\ C_{11} = C_{13} = C_{22} = C_{23} = C_{31} = C_{32} = C_{33} = 0, \hfill \\ K_{12} = K_{13} = K_{21} = K_{31} = 0 \hfill \\ \end{gathered}$$
(42)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, M., Farajpour, A. & Rastgoo, A. Coriolis effects on the thermo-mechanical vibration analysis of the rotating multilayer piezoelectric nanobeam. Acta Mech 234, 751–774 (2023). https://doi.org/10.1007/s00707-022-03430-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03430-0

Navigation