Skip to main content
Log in

Physically-Based Approach to the Mechanics of Strong Non-Local Linear Elasticity Theory

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

In this paper the physically-based approach to non-local elasticity theory is introduced. It is formulated by reverting the continuum to an ensemble of interacting volume elements. Interactions between adjacent elements are classical contact forces while long-range interactions between non-adjacent elements are modelled as distance-decaying central body forces. The latter are proportional to the relative displacements rather than to the strain field as in the Eringen model and subsequent developments. At the limit the displacement field is found to be governed by an integro-differential equation, solved by a simple discretization procedure suggested by the underlying mechanical model itself, with corresponding static boundary conditions enforced in a quite simple form. It is then shown that the constitutive law of the proposed model coalesces with the Eringen constitutive law for an unbounded domain under suitable assumptions, whereas it remains substantially different for a bounded domain. Thermodynamic consistency of the model also has been investigated in detail and some numerical applications are presented for different parameters and different functional forms for the decay of the long range forces. For simplicity, the problem is formulated for a 1D continuum while the general formulation for a 3D elastic solid has been reported in the appendix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Born, M., Huang, K.: Dynamical Theory of Crystal Lattices. Oxford University Press, London (1954)

    MATH  Google Scholar 

  2. Lax, M.: The relation between microscopic and macroscopic the theories of elasticity. In: Wallis, R.F. (ed.) Lattice Dynamics. Proc. of Int. Conference. Pergamon Press, London (1963)

    Google Scholar 

  3. Kröner, E.: Elasticity theory of materials with long-range cohesive forces. Int. J. Solids Struct. 3, 731–742 (1967)

    Article  MATH  Google Scholar 

  4. Krumhanls, J.A.: Generalized continuum field representation for lattice vibrations. In: Wallis, R.F. (ed.) Lattice Dynamics. Proc. of Int. Conference. Pergamon Press, London (1963)

    Google Scholar 

  5. Krumhanls, J.A.: Some considerations of the relations between solid state physics and generalized continuum mechanics. In: Kröner, R. (ed.) Mechanics of Generalized Continua. Proc. IUTAM Symposium. Springer, Berlin (1967)

    Google Scholar 

  6. Kunin, I.A.: The theory of elastic media with microstructure and the theory of dislocations. In: Kröner, R. (ed.) Mechanics of Generalized Continua. Proc. IUTAM Symposium. Springer, Berlin (1967)

    Google Scholar 

  7. Bažant, Z.P., Jirásek, M.: Non local integral formulations of plasticity and damage: A survey on recent results. J. Eng. Mech. 128, 1129–1239 (2002)

    Google Scholar 

  8. Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968)

    Article  MATH  Google Scholar 

  9. Aifantis, E.C.: Gradient effects at macro micro and nano scales. J. Mech. Behav. Mater. 5, 355–375 (1994)

    Google Scholar 

  10. Aifantis, E.C.: Update on a class of gradient theories. Mech. Mater. 35, 259–280 (2003)

    Article  Google Scholar 

  11. Peerlings, R.H.J., Geers, M.G.D., De Borst, R., Brekelmans, W.A.M.: A critical comparison of nonlocal and gradient-enhanced softening continua. Int. J. Solids Struct. 38, 7723–7746 (2001)

    Article  MATH  Google Scholar 

  12. Polizzotto, C.: Non local elasticity and related variational principles. Int. J. Solids Struct. 38, 7359–7380 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Polizzotto, C.: Gradient elasticity and non standard boundary conditions. Int. J. Solids Struct. 40, 7399–7423 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Polizzotto, C., Borino, G.: A thermodynamics-based formulation of gradient-dependent plasticity. Eur. J. Mech. A/Solids 17, 741–761 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Eringen, A.C., Edelen, D.G.B.: On non-local elasticity. Int. J. Eng. Sci. 10, 233–248 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  16. Eringen, A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10, 425–435 (1972)

    Article  MATH  Google Scholar 

  17. Rogula, D.: Nonlocal Theory of Material Media. CISM Courses and Lectures. Springer, Udine (1982)

    MATH  Google Scholar 

  18. Bažant, Z.P., Belytschko, T.B.: Continuum theory for strain-softening. J. Eng. Mech. 110(2), 1666–1692 (1984)

    Article  Google Scholar 

  19. Pijadier-Cabot, G., Bažant, Z.P.: Non-local damage theory. J. Eng. Mech. 113, 1512–1533 (1987)

    Article  Google Scholar 

  20. Ganghoffer, J.F., de Borst, R.: A new framework in non-local mechanics. Int. J. Eng. Sci. 38, 453–486 (2000)

    Article  Google Scholar 

  21. Borino, G., Failla, B., Parrinello, F.: A symmetric non-local damage theory. Int. J. Solids Struct. 40, 3621–3645 (2003)

    Article  MATH  Google Scholar 

  22. Puglisi, G., Truskinovsky, L.: Mechanics of a discrete chain with bi-stable elements. J. Mech. Phys. Solids 48, 1–27 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Puglisi, G.: Nucleation and phase propagation in a multistable lattice with weak nonlocal interactions. Contin. Mech. Thermodyn. 19, 299–319 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Truskinovsky, L., Vainchtein, A.: Quasicontinuum models of dynamic phase transitions. Contin. Mech. Thermodyn. 18, 1–21 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Truskinovsky, L., Vainchtein, A.: Kinetics of martensitic phase transitions: lattice model. SIAM J. Appl. Math. 66, 533–553 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Pagano, S., Paroni, S.: A simple model of phase transformation: from discrete to the continuum problem. Q. Appl. Math. 54, 328–348 (2003)

    Google Scholar 

  27. Truskinovsky, L., Zanzotto, G.: Elastic crystals with a triple point. J. Mech. Phys. Solids 50, 189–215 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Truskinovsky, L., Vainchtein, A.: The origin of nucleation peak in transformational plasticity. J. Mech. Phys. Solids 52, 1421–1446 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Fosdick, R.D., Mason, D.: Single phase energy minimizers for materials with nonlocal spatial dependence. Q. Appl. Math. 24, 161–195 (1996)

    MathSciNet  Google Scholar 

  30. Fosdick, R.D., Mason, D.: On a model of nonlocal continuum mechanics, Part I: Existence and regularity. SIAM J. Appl. Math. 58, 1278–1306 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  31. Fosdick, R.D., Mason, D.: On a model of nonlocal continuum mechanics, Part II: Structure, asymptotics and computations. J. Elast. 48, 51–100 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  32. Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. Silling, S.A., Zimmermann, M., Abeyaratne, R.: Deformation of a peridynamic bar. J. Elast. 73, 173–190 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Fuschi, P., Pisano, A.A.: Closed form solution for a non-local elastic bar in tension. Int. J. Solids Struct. 40, 13–23 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  35. Marotti De Sciarra, F.: Variational formulations and a consistent finite-element procedure for a class of non-local elastic continua. Int. J. Solids Struct. 45, 4184–4202 (2008)

    Article  MATH  Google Scholar 

  36. Di Paola, M., Zingales, M.: Long-range cohesive interactions of non-local continuum faced by fractional calculus. Int. J. Solids Struct. 45, 5642–5659 (2008)

    Article  MATH  Google Scholar 

  37. Cottone, G., Di Paola, M., Zingales, M.: Dynamics of Non-Local Systems Handled by Fractional Calculus. Advances in Numerical Methods. Springer, Berlin (2009)

    Google Scholar 

  38. Shkanukov, M.K.: On the convergence of difference schemes for differential equations with a fractional derivative. Dokl. Akad. Nauk 348, 746–748 (1996) (in Russian)

    MathSciNet  Google Scholar 

  39. Di Paola, M., Pirrotta, A., Zingales, M.: Physically-based approach to the mechanics of non-local continuum: variational principles. Int. J. Solids Struct. (in press)

  40. Edelen, D.G.B., Laws, N.: On the thermodynamics of systems with nonlocality. Arch. Ration. Mech. Anal. 43, 24–35 (1971)

    MATH  MathSciNet  Google Scholar 

  41. Romanov, K.I.: The Drucker stability of a material. J. Appl. Math. Mech. 65, 155–162 (2001)

    Article  MathSciNet  Google Scholar 

  42. Liu, B., Huang, Y., Jiang, H., Qu, S., Hwang, K.C.: The atomic-scale finite element method. Comput. Methods Appl. Mech. Eng. 193, 1849–1864 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Failla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Paola, M., Failla, G. & Zingales, M. Physically-Based Approach to the Mechanics of Strong Non-Local Linear Elasticity Theory. J Elasticity 97, 103–130 (2009). https://doi.org/10.1007/s10659-009-9211-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-009-9211-7

Keywords

Mathematics Subject Classification (2000)

Navigation