Skip to main content
Log in

A review of dynamic analyses of single- and multi-layered graphene sheets/nanoplates using various nonlocal continuum mechanics-based plate theories

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This article is intended to present an overview of dynamic analyses of single-/multi-layered graphene sheets (SLGSs/MLGSs) and nanoplates with combinations of simply supported, free, and clamped edge conditions embedded in an elastic medium using various two-dimensional (2D) nonlocal continuum mechanics-based plate theories. Based on Hamilton’s principle incorporating Eringen’s nonlocal constitutive relations, the authors derive strong formulations of assorted 2D nonlocal continuum mechanics-based plate theories for the free vibration analysis of embedded SLGSs/MLGSs, including the nonlocal classical plate theory, the nonlocal first-order shear deformation plate theory (SDPT), the nonlocal refined higher-order SDPT, the nonlocal sinusoidal SDPT, the nonlocal exponential SDPT, and the nonlocal hyperbolic SDPT. Navier-type solutions based on these 2D nonlocal plate theories for free vibration problems of simply supported, SLGSs/MLGSs and nanoplates embedded in an elastic medium are obtained. Articles examining various mechanical behaviors of SLGSs/MLGSs and nanoplates using different nonlocal plate theories available in the literature are tabulated into categories, including bending, free vibration, buckling, dynamic instability, wave propagation, geometrically nonlinear bending, geometrically nonlinear vibration, and forced vibration analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Sci. 306, 666–669 (2004)

    Article  Google Scholar 

  2. Wang, L., Liu, Y., Zhang, Z., Wang, B., Qiu, J., Hui, D.: Polymer composites-based thermoelectric materials and devices. Compos. Part B Eng. 122, 145–155 (2017)

    Article  Google Scholar 

  3. Hung, P.Y., Lau, K.T., Cheng, L.K., Leng, J., Hui, D.: Impact response of hybrid carbon/grass fiber reinforced polymer composites designed for engineering applications. Compos. Part B Eng. 133, 86–90 (2018)

    Article  Google Scholar 

  4. Li, Y., Wang, Q., Wang, S.: A review on enhancement of mechanical and tribological properties of polymer composites reinforced by carbon nanotubes and graphene sheet: Molecular dynamics simulations. Compos. Part B Eng. 160, 348–361 (2019)

    Article  Google Scholar 

  5. Review on polymer/graphite nanoplatelet nanocomposites: Lin, B., Zhong. W.H. J. Mater. Sci. 46, 5595–5614 (2011)

    Google Scholar 

  6. Cheng, H., Hu, C., Zhao, Y., Qu, L.: Graphene fiber: a new material platform for unique applications. NPG Asia Mater. 6, e113 (2014)

    Article  Google Scholar 

  7. Yin, F., Hu, J., Hong, Z., Wang, H., Liu, G., Shen, J., Wang, H.L., Zhang, K.Q.: A review on strategies for the fabrication of graphene fibers with graphene oxide. RSC Adv. 10, 5722–5733 (2020)

    Article  Google Scholar 

  8. Sadegh, H.: Development of graphene oxide from graphite: A review on synthesis, characterization and its application in wastewater treatment. Rev. Adv. Mater. Sci. 49, 38–43 (2017)

    Google Scholar 

  9. Zhao, Y., Li, X., Yan, B., Li, D., Lawes, S., Sun, X.: Significant impact of 2D graphene nanosheets on large volume change tin-based anodes in lithium-ion batteries: A review. J. Power Sources 274, 869–884 (2015)

    Article  Google Scholar 

  10. Nainar, M.A.M.: Model, synthesis and applications of graphene oxide: A review. Nanomater. Energy 3, 61–65 (2014)

    Article  Google Scholar 

  11. Lee, T., Min, S.H., Gu, M., Jung, Y.K., Lee, W., Lee, J.U., Seong, D.G., Kim, B.S.: Layer-by-layer assembly for graphene-based multilayer nanocomposites: Synthesis and application. Chem. Mater. 27, 3785–3796 (2015)

    Article  Google Scholar 

  12. Tan, J.M., Arulselvan, P., Fakurazi, S., Ithnin, H., Hussein, M.Z.: A review on characterization and biocompatibility of functionalized carbon nanotubes in drug delivery design. J. Nanomater. 2014, 917024 (2014)

    Article  Google Scholar 

  13. Khanna, V.K.: Nanosensors: Physical, Chemical, and Biological. CRC Press, Boca Raton, FL. (2012)

    Google Scholar 

  14. Kong, J., Franklin, N.R., Zhou, C., Chapline, M.G., Penh, S., Cho, K., Dai, H.: Nanotube molecular wires as chemical sensors. Sci. 287, 622–625 (2000)

    Article  Google Scholar 

  15. Modi, A., Koratkar, N., Lass, E., Wei, B., Ajayan, P.M.: Miniaturized gas ionization sensors using carbon nanotubes. Nature 424, 171–174 (2003)

    Article  Google Scholar 

  16. Arash, B., Wang, Q., Wu, N.: Gene detection with carbon nanotubes. J. Nanotech. Eng. Med. 3, 020902 (2012)

    Article  Google Scholar 

  17. Arash, B., Wang, Q.: Detection of gas atoms with graphene sheets. Comput. Mater. Sci. 60, 245–249 (2012)

    Article  Google Scholar 

  18. Arash, B., Wang, Q., Duan, W.H.: Detection of gas atoms via vibration of graphenes. Phys. Lett. A 275, 2411–2415 (2011)

    Article  Google Scholar 

  19. Wang, Q., Arash, B.: A review on applications of carbon nanotubes and graphenes as nano-resonator sensors. Comput. Mater. Sci. 82, 350–360 (2014)

    Article  Google Scholar 

  20. Arash, B., Jiang, J.W., Rabczuk, T.: A review on nanomechanical resonators and their applications in sensors and molecular transportation. Appl. Phys. Rev. 2, 021301 (2015)

    Article  Google Scholar 

  21. Arash, B., Wang, Q.: A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Comput. Mater. Sci. 51, 303–313 (2012)

    Article  Google Scholar 

  22. Eltaher, M.A., Khater, M.E., Emam, S.A.: A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams. Appl. Math. Modell. 40, 4109–4128 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ghayesh, M.H., Farajpour, A.: A review on the mechanics of functionally graded nanoscale and microscale structures. Int. J. Eng. Sci. 137, 8–36 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wu, C.P., Yu, J.J.: A review of mechanical analyses of rectangular nanobeams and single-, double-, and multi-walled carbon nanotubes using Eringen’s nonlocal elasticity theory. Arch. Appl. Mech. 89, 1761–1792 (2019)

    Article  Google Scholar 

  25. Pradhan, S.C., Phadikar, J.K.: Nonlocal elasticity theory for vibration of nanoplates. J. Sound Vib. 325, 206–223 (2009)

    Article  Google Scholar 

  26. Aghababaei, R., Reddy, J.N.: Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates. J. Sound Vib. 326, 277–289 (2009)

    Article  Google Scholar 

  27. Reddy, J.N.: Energy and Variational Methods in Applied Mechanics. Wiley, New York (1984)

    MATH  Google Scholar 

  28. Dym, C.L., Shames, I.H.: Solid Mechanics: A Variational Approach. Mc-Graw Hill Inc., New York (1973)

    MATH  Google Scholar 

  29. Wu, C.P., Li, W.C.: Free vibration analysis of embedded single-layered nanoplates and graphene sheets by using the multiple time scale method. Comput. Math. Appl. 73, 838–854 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  31. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer-Verlag, New York (2002)

    MATH  Google Scholar 

  32. Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, Q., Wang, C.: The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes. Nanotechnol. 18, 075702 (2007)

    Article  Google Scholar 

  34. Peddieson, J., Buchanan, G.R., McNitt, R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41, 305–312 (2003)

    Article  Google Scholar 

  35. Lu, P., Lee, H.P., Lu, C.: Dynamic properties of flexural beams using a nonlocal elasticity model. J. Appl. Phys. 99, 073510 (2006)

    Article  Google Scholar 

  36. Wang, Q.: Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J. Appl. Phys. 98, 124301 (2005)

    Article  Google Scholar 

  37. Wang, Q., Varadan, V.K.: Vibration of carbon nanotubes studied using nonlocal continuum mechanics. Smart Mater. Struct. 15, 659 (2006)

    Article  Google Scholar 

  38. Koutsoumaris, C.C., Eptaimeros, K.G., Tsamasphyros, G.J.: A dofferent approach to Eringen’s nonlocal integral stress model with applications for beams. Int. J. Solids Struct. 112, 222–238 (2017)

    Article  Google Scholar 

  39. He, X.Q., Kitipornchai, S., Liew, K.M.: resonance analysis of multi-layered graphene sheets used as nanoscale resonators. Nanotechnol. 16, 2086–2091 (2005)

    Article  Google Scholar 

  40. Lennard-Jones, L.E.: The determination of molecular fields: I From the variation for molecular simulation. Proc. Roy. Soc. London 106A, 441–462 (1924)

    Google Scholar 

  41. Liew, K.M., He, X.Q., Kitipornchai, S.: Predicting nanovibration of multi-layered graphene sheets embedded in an elastic matrix. Acta Mater. 54, 4229–4236 (2006)

    Article  Google Scholar 

  42. Kitipornchai, S., He, X.Q., Liew, K.M.: Continuum model for the vibration of multilayered graphene sheets. Phy. Rev. B 72, 075443 (2005)

    Article  Google Scholar 

  43. Bert, C.W., Malik, M.: Differential quadrature method in computational mechanics: A review. Appl. Mech. Rev. 49, 1–27 (1996)

    Article  Google Scholar 

  44. Du, H., Lim, M.K., Lin, R.M.: Application of generalized differential quadrature method to structural problems. Int. J. Numer. Meth. Eng. 37, 1881–1896 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wu, C.P., Lee, C.Y.: Differential quadrature solution for the free vibration analysis of laminated conical shells with variable stiffness. Int. J. Mech. Sci. 43, 1853–1869 (2001)

    Article  MATH  Google Scholar 

  46. Wang, Y.M., Chen, S.M., Wu, C.P.: A meshless collocation method based on the differential reproducing kernel interpolation. Comput. Mech. 45, 585–606 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. Chen, S.M., Wu, C.P., Wang, Y.M.: Hermite DRK interpolation-based collocation method for the analysis of Bernoulli-Euler beams and Kirchhoff-Love plates. Comput. Mech. 47, 425–453 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Murmu, T., Pradhan, S.C.: Vibration analysis of nano-single-layered graphene sheets embedded in elastic medium based on nonlocal elasticity theory. J. Appl. Phys. 105, 064319 (2009)

    Article  Google Scholar 

  49. Pradhan, S.C., Kumar, A.: Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and different quadrature method. Compos. Struct. 93, 774–779 (2011)

    Article  Google Scholar 

  50. Pradhan, S.C., Kumar, A.: Vibration analysis of orthotropic graphene sheets embedded in Pasternak elastic medium using nonlocal elasticity theory and differential quadrature method. Comput. Mater. Sci. 50, 239–245 (2010)

    Article  Google Scholar 

  51. Wang, Z., Xing, Y., Sun, Q., Yang, Y.: Highly accurate closed-form solutions for free vibration and eigenbuckling of rectangular nanoplates. Compos. Struct. 210, 822–830 (2019)

    Article  Google Scholar 

  52. Xing, Y.F., Liu, B.: Exact solutions for the free in-plane vibrations of rectangular plates. Int. J. Mech. Sci. 51, 246–255 (2009)

    Article  MATH  Google Scholar 

  53. Zenkour, A.M.: Vibration analysis of a single-layered graphene sheet embedded in visco-Pasternak’s medium using nonlocal elasticity theory. J. Vibroeng. 18, 2319–2330 (2016)

    Article  Google Scholar 

  54. Zhao, X., Liew, K.M.: Geometrically nonlinear analysis of functionally graded plates using the element-free kp-Ritz method. Comput. Methods Appl. Mech. Eng. 33–36, 2796–2811 (2009)

    Article  MATH  Google Scholar 

  55. Zhang, Y., Lei, Z.X., Zhang, L.W., Liew, K.M., Yu, J.L.: Nonlocal continuum model for vibration of single-layered graphene sheets based on the element-free kp-Ritz method. Eng. Anal. Bound. Elem. 56, 90–97 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  56. Chakraverty, S., Behera, L.: Free vibration of rectangular nanoplates using Rayleigh-Ritz method. Phys. E 56, 357–363 (2014)

    Article  MATH  Google Scholar 

  57. Phadikar, J.K., Pradhan, S.C.: Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates. Comput. Mater. Sci. 49, 492–499 (2010)

    Article  Google Scholar 

  58. Analooei, H.R., Azhari, M., Heidarpour, A.: Elastic buckling and vibration analyses of orthotropic nanoplates using nonlocal continuum mechanics and spline finite strip method. Appl. Math. Modell. 37, 6703–6717 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  59. Cheung, Y.K., Tham, L.G.: Finite Strip Method. CRC Press, Florida, Boca Raton (1998)

    Google Scholar 

  60. Arash, B., Wang, Q.: Vibration of single- and double-layered graphene sheets. J. Nanotechnol. Eng. Medic. 2, 011012 (2011)

    Article  Google Scholar 

  61. Lin, R.M.: Nanoscale vibration characteristics of multi-layered graphene sheets. Mech. Syst. Sign. Proc. 29, 251–261 (2012)

    Article  Google Scholar 

  62. Lin, R.M.: Nanoscale vibration characterization of multi-layered graphene sheets embedded in an elastic medium. Comput. Mater. Sci. 53, 44–52 (2012)

    Article  Google Scholar 

  63. Ansari, R., Arash, B., Rouhi, H.: Vibration characteristics of embedded multi-layered graphene sheets with different boundary conditions via nonlocal elasticity. Compos. Struct. 93, 2419–2429 (2011)

    Article  Google Scholar 

  64. Ansari, R., Arash, B., Rouhi, H.: Nanoscale vibration analysis of embedded multi-layered graphene sheets under various boundary conditions. Comput. Mater. Sci. 50, 3091–3100 (2011)

    Article  Google Scholar 

  65. Ansari, R., Rajabiehfard, R., Arash, B.: Nonlocal finite element model for vibrations of embedded multi-layered graphene sheets. Comput. Mater. Sci. 49, 831–838 (2010)

    Article  Google Scholar 

  66. Zenkour, A.M., Al-Subhi, A.H.: Thermal vibrations of a graphene sheet embedded in viscoelastic medium based on nonlocal shear deformation theory. Int. J. Acoust. Vibr. 24, 485–493 (2019)

    Article  Google Scholar 

  67. Amir, S.: Orthotropic patterns of visco-Pasternak foundation in nonlocal vibration of orthotropic graphene sheet under thermos-magnetic fields based on new first-order shear deformation theory. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 233, 197–208 (2016)

    Google Scholar 

  68. Moshir, S.K., Eipakchi, H., Vatandoost, H.: Analytical procedure for determining natural frequencies of annular single-layered graphene sheet via nonlocal elasticity theory. J. Eng. Mech. 144, 04018086 (2018)

    Google Scholar 

  69. Asbaghian Namin, S.F., Pilafkan, R.: Vibration analysis of defective graphene sheets using nonlocal elasticity theory. Phys. E. 93, 257–264 (2017)

    Article  Google Scholar 

  70. Hosseini-Hashemi, S., Kermajani, M., Nazemnezhad, R.: An analytical study on the buckling and free vibration of rectangular nanoplates using nonlocal third-order shear deformation plate theory. Eur. J. Mech. A/Solids 51, 29–43 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  71. Daneshmehr, A., Rajabpoor, A., Hadi, A.: Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with high order theories. Int. J. Eng. Sci. 95, 23–35 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  72. Ebrahimi, F., Shafiei, N.: Influence of initial shear stress on the vibration behavior of single-layered graphene sheets embedded in an elastic medium based on Reddy’s higher-order shear deformation plate theory. Mech. Adv. Mater. Struct. 24, 761–772 (2017)

    Article  Google Scholar 

  73. Ebrahimi, F., Heidari, E.: Surface effects on nonlinear vibration of embedded functionally graded nanoplates via higher order shear deformation plate theory. Mech. Adv. Mater. Struct. 26, 671–699 (2019)

    Article  Google Scholar 

  74. Sahmani, S., Bahrami, M., Ansari, R.: Surface effects on the free vibration behavior of postbuckled circular higher-order shear deformable nanoplates including geometrical nonlinearity. Acta Astron. 105, 417–427 (2014)

    Article  Google Scholar 

  75. Touratier, M.: An efficient standard plate theory. Int. J. Eng. Sci. 29, 901–916 (1991)

    Article  MATH  Google Scholar 

  76. Karama, M., Afaq, K.S., Mistou, S.: Mechanical behavior of laminated composite beam by new multi-layered laminates composite structures model with transverse shear stress continuity. Int. J. Solids Struct. 40, 1525–1546 (2003)

    Article  MATH  Google Scholar 

  77. Soldatos, K.P.: A transverse shear deformation theory for homogeneous monoclinic plates. Acta Mech. 94, 195–220 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  78. Sobhy, M.: Thermomechanical bending and free vibration of single-layered graphene sheets embedded in an elastic medium. Phys. E 56, 400–409 (2014)

    Article  Google Scholar 

  79. Sobhy, M.: Hygrothermal vibration of orthotropic double-layered graphene sheets embedded in an elastic medium using the two-variable plate theory. Appl. Math. Modell. 40, 85–99 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  80. Arefi, M., Bidgoli, E.M.R., Dimitri, R.: Free vibrations of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets. Aerosp. Sci. Tech. 81, 108–117 (2018)

    Article  Google Scholar 

  81. Ghorbanpour Arani, A., Jalaei, M.H.: Investigation of the longitudinal magnetic field effect on dynamic response of viscoelastic graphene sheet based on sinusoidal shear deformation theory. Phys. B 506, 94–104 (2017)

    Article  Google Scholar 

  82. Zur, K.K., Arefi, M., Kim, J., Reddy, J.N.: Free vibration and buckling analyses of magneto-electro-elastic FGM nanoplates based on nonlocal modified higher-order sinusoidal shear deformation theory. Compos. Part B 182, 107601 (2020)

    Article  Google Scholar 

  83. Afshari, H., Adab, N.: Size-dependent buckling and vibration analyses of GNP reinforced microplates based on the quasi-3D sinusoidal shear deformation theory. Mech. Based Des. Struct. Mach. (2020). https://doi.org/10.1080/15397734.2020.1713158

    Article  Google Scholar 

  84. Khorshidi, K., Asgari, T., Fallah, A.: Free vibrations analysis of functionally graded rectangular nano-plates based on nonlocal exponential shear deformation theory. Mech. Adv. Compos. Struct. 2, 79–93 (2015)

    Google Scholar 

  85. Farajpour, A., Hairi Yazdi, M.R., Rastgoo, A., Loghmani, M., Mohammadi, M.: Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates. Compos. Struct. 140, 323–336 (2016)

    Article  Google Scholar 

  86. Aksencer, T., Aydogdu, M.: Levy type solution method for vibration and buckling of nanoplates using nonlocal elasticity theory. Phys. E 43, 954–959 (2011)

    Article  Google Scholar 

  87. Reddy, J.N.: Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates. Int. J. Eng. Sci. 48, 1507–1518 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  88. Pradhan, S.C., Phadikar, J.K.: Nonlocal theory for buckling of nanoplates. Int. J. Struct. Stab. Dyn. 11, 411–429 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  89. Murmu, T., Pradhan, S.C.: Buckling of biaxially compressed orthotropic plates at small scales. Mech. Res. Commun. 36, 933–938 (2009)

    Article  MATH  Google Scholar 

  90. Murmu, T., Pradhan, S.C.: Vibration analysis of nanoplates under uniaxial prestressed conditions via nonlocal elasticity. J. Appl. Phys. 106, 104301 (2009)

    Article  Google Scholar 

  91. Despotovic, N.: Stability and vibration of a nanoplate under body force using nonlocal elasticity theory. Acta Mech. 229, 273–284 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  92. Zenkour, A.M., Sobhy, M.: Nonlocal elasticity theory for thermal buckling of nanoplates lying on Winkler-Pasternak elastic substrate medium. Phys. E 53, 251–259 (2013)

    Article  Google Scholar 

  93. Malekzadeh, P., Golbahar Haghighi, M.R., Shojaee, M.: Nonlinear free vibration of skew nanoplates with surface and small scale effects. Thin-Walled Struct. 78, 48–56 (2014)

    Article  Google Scholar 

  94. Yang, W.D., Yang, F.P., Wang, X.: Dynamic instability and bifurcation of electrically actuated circular nanoplate considering surface behavior and small scale effect. Int. J. Mech. Sci. 126, 12–23 (2017)

    Article  Google Scholar 

  95. Wang, Y.Z., Cui, H.T., Li, F.M., Kishimoto, K.: Thermal buckling of a nanoplate with small-scale effects. Acta Mech. 224, 1299–1307 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  96. Narendar, S., Gopalakrishnan, S.: Study of terahertz wave propagation properties in nanoplates with surface and small-scale effects. Int. J. Mech. Sci. 64, 221–231 (2012)

    Article  Google Scholar 

  97. Malekzadeh, P., Setoodeh, A.R., Alibeygi Beni, A.: Small scale effect on the thermal buckling of orthotropic arbitrary straight-sided quadrilateral nanoplates embedded in an elastic medium. Compos. Struct. 93, 2083–2089 (2011)

    Article  Google Scholar 

  98. Naderi, A., Saidi, A.R.: Modified nonlocal Mindlin plate theory for buckling analysis of nanoplates. J. Nanomech. Micromech. 4, A4013015 (2014)

    Article  Google Scholar 

  99. Ansari, R., Norouzzadeh, A.: Nonlocal and surface effects on the buckling behavior of functionally graded nanoplates: An isogeometric analysis. Phys. E 84, 84–97 (2016)

    Article  Google Scholar 

  100. Golmakani, M.E., Rezatalab, J.: Nonlinear bending analysis of orthotropic nanoscale plates in an elastic matrix based on nonlocal continuum mechanics. Compos. Struct. 111, 85–97 (2014)

    Article  Google Scholar 

  101. Srividhya, S., Raghu, P., Rajagopal, A., Reddy, J.N.: Nonlocal nonlinear analysis of functionally graded plates using third-order shear deformation theory. Int. J. Eng. Sci. 125, 1–22 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  102. Gholami, R., Ansari, R., Gholami, Y.: Size-dependent bending, buckling and vibration of higher-order shear deformable magneto-electro-thermo-elastic rectangular nanoplates. Mater. Res. Express 4, 065702 (2017)

    Article  Google Scholar 

  103. Gholami, R., Ansari, R., Gholami, Y.: Nonlocal large-amplitude vibration of embedded higher-order shear deformable multiferroic composite rectangular nanoplates with different edge conditions. J. Intell. Mater. Syst. Struct. 29, 944–968 (2018)

    Article  Google Scholar 

  104. Daneshmehr, A., Rajabpoor, A., Pourdavood, M.: Stability of size dependent functionally graded nanoplate based on nonlocal elasticity and higher order plate theories and different boundary conditions. Int. J. Eng. Sci. 82, 84–100 (2014)

    Article  Google Scholar 

  105. Nematollahi, M.S., Mohammadi, H., Nematollahi, M.A.: Thermal vibration analysis of nanoplates based on the higher-order nonlocal strain gradient theory by an analytical approach. Superlattices Microstruct. 111, 944–959 (2017)

    Article  Google Scholar 

  106. Narendar, S.: Buckling analysis of micro-/nano-scale plates based on two-variable refined plate theory incorporating nonlocal scale effects. Compos. Struct. 93, 3093–3103 (2011)

    Article  Google Scholar 

  107. Narendar, S., Gopalakrishnan, S.: Scale effects on buckling analysis of orthotropic nanoplates based on nonlocal two-variable refined plate theory. Acta Mech. 223, 395–413 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  108. Khetir, H., Bouiadjra, M.B., Houari, M.S.A., Tounsi, A., Mahmoud, S.R.: A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates. Struct. Eng. Mech. 64, 391–402 (2017)

    Google Scholar 

  109. Khorshidi, K., Fallah, A.: Buckling analysis of functionally graded rectangular nano-plate based on nonlocal exponential shear deformation theory. Int. J. Mech. Sci. 113, 94–104 (2016)

    Article  Google Scholar 

  110. Sobhy, M., Radwan, A.F.: A new quasi 3D nonlocal plate theory for vibration and buckling of FGM nanoplates. Int. J. Appl. Mech. 9, 1750008 (2017)

    Article  Google Scholar 

  111. Jomehzadeh, E., Saidi, A.R.: Decoupling the nonlocal elasticity equations for three dimensional vibration analysis of nano-plates. Compos. Struct. 93, 1015–1020 (2011)

    Article  Google Scholar 

  112. Murmu, T., Sienz, J., Adhikari, S., Arnold, C.: Nonlocal buckling behavior of bonded double-nanoplate-systems. J. Appl. Phys. 110, 084316 (2011)

    Article  Google Scholar 

  113. Murmu, T., Adhikari, S.: Nonlocal vibration of bonded double-nanoplate-systems. Compos. Part B 42, 1901–1911 (2011)

    Article  Google Scholar 

  114. Pouresmaeeli, S., Fazelzadeh, S.A., Ghavanloo, E.: Exact solution for nonlocal vibration of double-orthotropic nanoplates embedded in elastic medium. Compos. Part B 43, 3384–3390 (2012)

    Article  Google Scholar 

  115. Wang, Y., Li, F.M., Wang, Y.Z.: Nonlinear vibration of double layered viscoelastic nanoplates based on nonlocal theory. Phys. E 67, 65–76 (2015)

    Article  Google Scholar 

  116. Nematollahi, M.S., Mohammadi, H.: Geometrically nonlinear vibration analysis of sandwich nanoplates based on higher-order nonlocal strain gradient theory. Int. J. Mech. Sci. 156, 31–45 (2019)

    Article  Google Scholar 

  117. Thai, H.T., Vo, T.P., Nguyen, T.K., Lee, J.: A nonlocal sinusoidal plate model for micro/nanoscale plates. Proc. IMechE. Part C 228, 2652–2660 (2014)

    Article  Google Scholar 

  118. Nami, M.R., Janghorban, M.: Static analysis of rectangular nanoplates using trigonometric shear deformation theory based on nonlocal elasticity theory. Beilst. J. Nanotechnol. 4, 968–973 (2013)

    Article  Google Scholar 

  119. Alzahrani, E.O., Zenkour, A.M., Sobhy, M.: Small scale effect on hygro-thermo-mechanical bending of nanoplates embedded in an elastic medium. Compos. Struct. 105, 163–172 (2013)

    Article  Google Scholar 

  120. Kolahchi, R., Bidgoli, A.M.M., Heydari, M.M.: Size-dependent bending analysis of FGM nano-sinusoidal plates resting on orthotropic elastic medium. Struct. Eng. Mech. 55, 1001–1014 (2015)

    Article  Google Scholar 

  121. Ghorbanpour Arani, A., Cheraghbaj, A., Kolahchi, R.: Dynamic buckling of FGM viscoelastic nanoplates resting on orthotropic elastic medium based on sinusoidal shear deformation theory. Struct. Eng. Mech. 60, 489–505 (2016)

    Article  Google Scholar 

  122. Kadari, B., Bessaim, A., Tounsi, A., Heireche, H., Bousahla, A.A., Houari, M.S.A.: Buckling analysis of orthotropic nanoscale plates resting on elastic foundations. J. Nano Res. 55, 42–56 (2018)

    Article  Google Scholar 

  123. Arefi, M., Zenkour, A.M.: Effect of thermos-magneto-electro-mechanical fields on the bending behaviors of a three-layered nanoplate based on sinusoidal shear deformation plate theory. J. Sandw. Struct. Mater. 21, 639–669 (2019)

    Article  Google Scholar 

  124. Arefi, M., Zamani, M.H., Kiani, M.: Smart electrical and magnetic stability analysis of exponentially graded shear deformable three-layered nanoplate based on nonlocal piezo-magneto-elasticity theory. J. Sandw. Struct. Mater. 22, 599–625 (2020)

    Article  Google Scholar 

  125. Ansari, R., Sahmani, S.: Prediction of buckling behavior of single-layered graphene sheets based on nonlocal plate models and molecular dynamics simulations. Appl. Math. Modell. 37, 7338–7351 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  126. Naderi, A., Saidi, A.R.: Nonlocal postbuckling analysis of graphene sheets in a nonlinear polymer medium. Int. J. Eng. Sci. 81, 49–65 (2014)

    Article  Google Scholar 

  127. Zenkour, A.M.: Nonlocal transient thermal analysis of a single-layered graphene sheet embedded in viscoelastic medium. Phys. E 79, 87–97 (2016)

    Article  Google Scholar 

  128. Pradhan, S.C., Kumar, A.: Buckling analysis of single layered graphene sheet under biaxial compression using nonlocal elasticity theory and DQ method. J. Comput. Theor. Nanosci. 8, 1325–1334 (2011)

    Article  Google Scholar 

  129. Pradhan, S.C., Murmu, T.: Small scale effect on the buckling of single-layered graphene sheets under biaxial compression via nonlocal continuum mechanics. Comput. Mater. Sci. 47, 268–274 (2009)

    Article  Google Scholar 

  130. Shen, Z.B., Tang, H.L., Li, D.K., Tang, G.J.: Vibration of single-layered graphene sheet-based nanomechanical sensor via nonlocal Kirchhoff plate theory. Comput. Mater. Sci. 61, 200–205 (2012)

    Article  Google Scholar 

  131. Pradhan, S.C., Murmu, T.: Small scale effect on the buckling analysis of single-layered graphene sheet embedded in an elastic medium based on nonlocal plate theory. Phys. E 42, 1293–1301 (2010)

    Article  Google Scholar 

  132. Sarrami-Foroushani, S., Azhari, M.: On the use of bubble complex finite strip method in the nonlocal buckling and vibration analysis of single-layered graphene sheets. Int. J. Mech. Sci. 85, 168–178 (2014)

    Article  Google Scholar 

  133. Ansari, R., Rouhi, H.: Explicit analytical expressions for the critical buckling stresses in a monolayer graphene sheet based on nonlocal elasticity. Solid State Commun. 152, 56–59 (2012)

    Article  Google Scholar 

  134. Ansari, R., Shahabodini, A., Alipour, A., Rouhi, H.: Stability of a single-layer graphene sheet with various edge conditions: a non-local plate model including interatomic potentials. Proc. IMechE Part N: J. Nanoeng. Nanosyst. 226, 51–60 (2012)

    Google Scholar 

  135. Sarrami-Foroushani, S., Azhari, M.: Nonlocal vibration and buckling analysis of single and multi-layered graphene sheets using finite strip method including van der Waals effects. Phys. E 57, 83–95 (2014)

    Article  Google Scholar 

  136. Zhou, S.M., Sheng, L.P., Shen, Z.B.: Transverse vibration of circular graphene sheet-based mass sensor via nonlocal Kirchhoff plate theory. Comput. Mater. Sci. 86, 73–78 (2014)

    Article  Google Scholar 

  137. Zhang, Y., Zhang, L.W., Liew, K.M., Yu, J.L.: Buckling analysis of graphene sheets embedded in an elastic medium based on the kp-Ritz method and non-local elasticity theory. Eng. Anal. Bound. Elem. 70, 31–39 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  138. Zhang, Y., Zhang, L.W., Liew, K.M., Yu, J.L.: Transient analysis of single-layered graphene sheet using the kp-Ritz method and nonlocal elasticity theory. Appl. Math. Comput. 258, 489–501 (2015)

    MathSciNet  MATH  Google Scholar 

  139. Samaei, A.T., Abbasion, S., Mirsayar, M.M.: Buckling analysis of a single-layer graphene sheet embedded in an elastic medium based on nonlocal Mindlin plate theory. Mech. Res. Commun. 38, 481–485 (2011)

    Article  MATH  Google Scholar 

  140. Golmakani, M.E., Malikan, M., Sadraee Far, M.N., Majidi, H.R.: Bending and buckling formulation of graphene sheets based on nonlocal simple first-order shear deformation theory. Mater. Res. Express 5, 065010 (2018)

    Article  Google Scholar 

  141. Golmakani, M.E., Sadraee Far, M.N.: Nonlinear thermos-elastic bending behavior of graphene sheets embedded in an elastic medium based on nonlocal elasticity theory. Comput. Math. Appl. 72, 785–805 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  142. Setoodeh, A.R., Malekzadeh, P., Vosoughi, A.R.: Nonlinear free vibration of orthotropic graphene sheets using nonlocal Mindlin plate theory. Proc. IMechE Part C J. Mech. Eng. Sci. 226, 1896–1906 (2012)

    Article  Google Scholar 

  143. Ghorbanpour Arani, A., Jalaei, M.H.: Nonlocal dynamic response of embedded single-layered graphene sheet via analytical approach. J. Eng. Math. 98, 129–144 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  144. Meletis, E.I.: A novel refined plate theory for free vibration analysis of single-layered graphene sheets lying on Winkler-Pasternak elastic foundations. J. Nano Res. 58, 151–164 (2019)

    Article  Google Scholar 

  145. Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H., Tounsi, A.: A new nonlocal HSDT for analysis of stability of single layer graphene sheet. Adv. Nano Res. 6, 147–162 (2018)

    Google Scholar 

  146. Sobhy, M.: Levy-type solution for bending of single-layered graphene sheets in thermal environment using the two-variable plate theory. Int. J. Mech. Sci. 90, 171–178 (2015)

    Article  Google Scholar 

  147. Liu, H., Yang, J.L.: Elastic wave propagation in a single-layered graphene sheet on two-parameter elastic foundation via nonlocal elasticity. Phys. E 44, 1236–1240 (2012)

    Article  Google Scholar 

  148. Jiang, R.W., Shen, Z.B., Tang, G.J.: A semi-analytical method for nonlocal buckling and vibration of a single-layered graphene sheet nanomechanical resonator subjected to initial in-plane loads. Acta Mech. 228, 1725–1734 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  149. Zhang, Y., Zhang, L.W., Liew, K.M., Yu, J.L.: Free vibration analysis of bilayer graphene sheet subjected to in-plane magnetic fields. Compos. Struct. 144, 86–95 (2016)

    Article  Google Scholar 

  150. Radic, N., Jeremic, D.: Thermal buckling of double-layered graphene sheets embedded in an elastic medium with various boundary conditions using a nonlocal new first-order shear deformation theory. Compos Part B 97, 201–215 (2016)

    Article  Google Scholar 

  151. Golmakani, M.E., Sadraee Far, M.N.: Buckling analysis of biaxially compressed double-layered graphene sheets with various boundary conditions based on nonlocal elasticity theory. Microsyst. Technol. 23, 2145–2161 (2017)

    Article  Google Scholar 

  152. He, X.Q., Wang, J.B., Liu, B., Liew, K.M.: Analysis of nonlinear forced vibration of multi-layered graphene sheets. Comput. Mater. Sci. 61, 194–199 (2012)

    Article  Google Scholar 

  153. Lu, L., Ru, C.Q., Guo, X.: Vibration isolation of few-layer graphene sheets. Int. J. Solids Struct. 185–186, 78–88 (2020)

    Article  Google Scholar 

  154. Anjomshoa, A., Shahidi, A.R., Hassani, B., Jomehzadeh, E.: Finite element buckling analysis of multi-layered graphene sheets on elastic substrate based on nonlocal elasticity theory. Appl. Math. Modell. 38, 5934–5955 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  155. Farajpour, A., Solghar, A.A., Shahidi, A.: Postbuckling analysis of multi-layered graphene sheets under non-uniform biaxial compression. Phys. E 47, 197–206 (2013)

    Article  Google Scholar 

  156. Wang, J., He, X., Kitipornchai, S., Zhang, H.: Geometrical nonlinear free vibration of multi-layered graphene sheets. J. Phys. D: Appl. Phys. 44, 135401 (2011)

    Article  Google Scholar 

  157. Jandaghian, A.A., Rahmani, O.: Buckling analysis of multi-layered graphene sheets based on a continuum mechanics model. Appl. Phys. A 123, 324 (2017)

    Article  Google Scholar 

  158. Tian, M., Wang, J., He, X., Sun, Y.: Vibration properties of multi-layered graphene sheets. Adv. Mater. Res. 287–290, 81–85 (2011)

    Article  Google Scholar 

  159. Jomehzadeh, E., Saidi, A.R.: A study on large amplitude vibration of multilayered graphene sheets. Comput. Mater. Sci. 50, 1043–1051 (2011)

    Article  Google Scholar 

  160. Wang, L., He, X.: Vibration of a multilayered graphene sheet with initial stress. J. Nanotechnol. Eng. Medic. 1, 041004 (2010)

    Article  Google Scholar 

  161. Karlicic, D., Cajic, M., Kozic, P., Pavlovic, I.: Temperature effects on the vibration and stability behavior of multi-layered graphene sheets embedded in an elastic medium. Compos. Struct. 131, 672–681 (2015)

    Article  Google Scholar 

  162. Sobhy, M.: Generalized two-variable plate theory for multi-layered graphene sheets with arbitrary boundary conditions. Acta Mech. 225, 2521–2538 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  163. Arghavan, S., Singh, A.V.: Effects of van der Waals interactions on the nonlinear vibration of multi-layered graphene sheets. J. Phys. D: Appl. Phys. 45, 455305 (2012)

    Article  Google Scholar 

  164. Arefi, M., Tabatabaeian, A., Mohammadi, M.: Bending and stress analysis of polymeric composite plates reinforced with functionally graded graphene platelets based on sinusoidal shear-deformation plate theory. Defence Technol. 17, 64–74 (2021)

    Article  Google Scholar 

  165. Mokhtar, Y., Heireche, H., Bousahla, A.A., Houari, M.S.A., Tounsi, A., Mahmoud, S.R.: A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory. Smart Struct. Syst. 21, 397–405 (2018)

    Google Scholar 

  166. Kavanroodi, M.K., Fereidoon, A., Mirafzal, A.R.: Buckling analysis of coupled DLGSs systems resting on elastic medium using sinusoidal shear deformation orthotropic plate theory. J. Braz. Mech. Sci. Eng. 39, 2817–2829 (2017)

    Article  Google Scholar 

  167. Wu, C.P., Li, W.C.: Three-dimensional static analysis of nanoplates and graphene sheets by using Eringen’s nonlocal elasticity theory and the perturbation method. CMC-Comput. Mater. Continua 52, 73–103 (2016)

    Google Scholar 

  168. Wu, C.P., Li, W.C.: Asymptotic nonlocal elasticity theory for the buckling analysis of embedded single-layered nanoplates/graphene sheets under biaxial compression. Phys. E 89, 160–169 (2017)

    Article  Google Scholar 

  169. Wu, C.P., Chiu, H.M.: A three-dimensional static analysis of embedded single-walled carbon nanotubes using the perturbation method. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6690

    Article  Google Scholar 

  170. Wu, C.P., Chen, Y.J., Wang, Y.M.: Three-dimensional asymptotic nonlocal elasticity theory for the free vibration analysis of embedded single-walled carbon nanotubes. Comput. Math. Appl. 80, 161–182 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  171. Wu, C.P., Chen, Y.J.: A nonlocal continuum mechanics-based asymptotic theory for the buckling analysis of SWCNTs embedded in an elastic medium subjected to combined hydrostatic pressure and axial compression. Mech. Mater. 148, 103514 (2020)

    Article  Google Scholar 

  172. Wu, C.P., Lin, C.C.: Static analysis of multiple graphene sheet systems in cylindrical bending and resting on an elastic medium. Struct. Eng. Mech. 75, 109–122 (2020)

    Google Scholar 

  173. Wu, C.P., Chen, Y.J.: Cylindrical bending vibration of multiple graphene sheet systems embedded in an elastic medium. Int. J. Struct. Stab. Dyn. 19, 1950035 (2019)

    Article  MathSciNet  Google Scholar 

  174. Demir, C., Civalek, O.: On the analysis of microbeams. Int. J. Eng. Sci. 121, 14–33 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  175. Barretta, R., Feo, L., Luciano, R., de Sciarra, F.M.: Application of an enhanced version of the Eringen differential model to nanotechnology. Compos. Part B 96, 274–280 (2016)

    Article  Google Scholar 

  176. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  177. Hadjesfandiari, A.R., Dargush, G.F.: Couple stress theory for solids. Int. J. Solids Struct. 48, 2496–2510 (2011)

    Article  Google Scholar 

  178. Hadjesfandiari, A.R., Dargush, G.F.: Fundamental solutions for isotropic size-dependent couple stress elasticity. Int. J. Solids Struct. 50, 1253–1265 (2013)

    Article  Google Scholar 

  179. Aifantis, E.C.: Gadient deformation models at nano, micro, and macro scales. J. Eng. Mater Technol. 121, 189–202 (1999)

    Article  Google Scholar 

  180. Fleck, N.A., Hutchinson, J.W.: A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41, 1825–1857 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  181. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surface. Arch. Ratio. Mech. Anal. 57, 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  182. Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)

    Article  MATH  Google Scholar 

  183. Akgöz, B., Civalek, Ö.: A novel microstructure-dependent shear deformable beam model. Int. J. Mech. Sci. 99, 10–20 (2015)

    Article  MATH  Google Scholar 

  184. Akgöz, B., Civalek, Ö.: A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory. Acta Mech. 226, 2277–2294 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  185. Wang, K.F., Wang, B., Zhang, C.: Surface energy and thermal stress effect on nonlinear vibration of electrostatically actuated circular micro-/nanoplates based on modified couple stress theory. Acta Mech. 228, 129–140 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  186. Vibration analysis of carbon nanotube-reinforced composite microbeams: Civalek, Dastjerdi, S., Akbas, S.D., B. Math. Meth. Appl. Sci. 2021, 1–17 (2021)

    Google Scholar 

  187. Thai, H.T., Kim, S.E.: A size-dependent functionally graded Reddy plate model based on a modified couple stress theory. Compos. Part B 45, 1636–1645 (2013)

    Article  Google Scholar 

  188. Thai, H.T., Vo, T.P.: A size-dependent functionally graded sinusoidal plate model based on a modified couple stress theory. Compos. Struct. 96, 376–383 (2013)

    Article  Google Scholar 

  189. Kiani, K.: Elastic buckling of current-carrying double-nanowire systems immersed in a magnetic field. Acta Mech. 227, 3549–3570 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  190. Beni, Y.T.: Size-dependent electromechanical bending, buckling, and free vibration analysis of functionally graded piezoelectric nanobeams. J. Intell. Mater. Syst. Struct. 27, 2199–2215 (2016)

    Article  Google Scholar 

  191. Wu, C.P., Hu, H.X.: A unified size-dependent plate theory for static bending and free vibration analyses of micro- and nano-scale plates based on the consistent couple stress theory. submitted to Mech. Mater. (2021)

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of the Republic of China through Grant MOST 109-2221-E-006-015-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Ping Wu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Expressions of the generalized moment and shear force resultants of the mth-layer GS based on the RSDPT

By using Eqs. (64) and (65), the generalized moment and shear force resultants of the mth-layer GS based on the RSDPT can be expressed in terms of displacement components as follows:

$$\left( {1 - \mu \,\nabla^{2} } \right)\,\left\{ {\begin{array}{*{20}c} {M_{xm} } \\ {M_{ym} } \\ {M_{xym} } \\ \end{array} } \right\} = \left\{ {\begin{array}{*{20}c} {\left[ {D_{11} - 4F_{11} /\left( {3h^{2} } \right)} \right]\phi_{xm,x} + \left[ {D_{12} - 4F_{11} /\left( {3h^{2} } \right)} \right]\phi_{ym,y} - \left[ {4F_{11} /\left( {3h^{2} } \right)} \right]w_{m,xx} - \left[ {4F_{12} /\left( {3h^{2} } \right)} \right]w_{m,yy} } \\ {\left[ {D_{12} - 4F_{12} /\left( {3h^{2} } \right)} \right]\phi_{xm,x} + \left[ {D_{22} - 4F_{22} /\left( {3h^{2} } \right)} \right]\phi_{ym,y} - \left[ {4F_{12} /\left( {3h^{2} } \right)} \right]w_{m,xx} - \left[ {4F_{22} /\left( {3h^{2} } \right)} \right]w_{m,yy} } \\ {\left[ {D_{66} - 4F_{66} /\left( {3h^{2} } \right)} \right]\phi_{xm,y} + \left[ {D_{66} - 4F_{66} /\left( {3h^{2} } \right)} \right]\phi_{ym,x} - \left[ {8F_{66} /\left( {3h^{2} } \right)} \right]w_{m,xy} } \\ \end{array} } \right\},$$
(92)
$$\left( {1 - \mu \nabla^{2} } \right)\,\left\{ {\begin{array}{*{20}c} {P_{xm} } \\ {P_{ym} } \\ {P_{xym} } \\ \end{array} } \right\} = \left\{ {\begin{array}{*{20}c} {\left[ {F_{11} - 4H_{11} /\left( {3h^{2} } \right)} \right]\phi_{xm,x} + \left[ {F_{12} - 4H_{12} /\left( {3h^{2} } \right)} \right]\phi_{ym,y} - \left[ {4H_{11} /\left( {3h^{2} } \right)} \right]w_{m,xx} - \left[ {4H_{12} /\left( {3h^{2} } \right)} \right]w_{m,yy} } \\ {\left[ {F_{12} - 4H_{12} /\left( {3h^{2} } \right)} \right]\phi_{xm,x} + \left[ {F_{22} - 4H_{22} /\left( {3h^{2} } \right)} \right]\phi_{ym,y} - \left[ {4H_{12} /\left( {3h^{2} } \right)} \right]w_{m,xx} - \left[ {4H_{22} /\left( {3h^{2} } \right)} \right]w_{m,yy} } \\ {\left[ {F_{66} - 4H_{66} /\left( {3h^{2} } \right)} \right]\phi_{xm,y} + \left[ {F_{66} - 4H_{66} /\left( {3h^{2} } \right)} \right]\phi_{ym,x} - \left[ {8H_{66} /\left( {3h^{2} } \right)} \right]w_{m,xy} } \\ \end{array} } \right\},$$
(93)
$$\left( {1 - \mu \nabla^{2} } \right)\,\left\{ {\begin{array}{*{20}c} {Q_{xm} } \\ {Q_{ym} } \\ \end{array} } \right\} = \left\{ {\begin{array}{*{20}c} {\left( {A_{55} - 4D_{55} /h^{2} } \right)w_{m} ,_{x} + \left( {A_{55} - 4D_{55} /h^{2} } \right)\phi_{xm} } \\ {\left( {A_{44} - 4D_{44} /h^{2} } \right)w_{m} ,_{y} + \left( {A_{44} - 4D_{44} /h^{2} } \right)\phi_{ym} } \\ \end{array} } \right\},$$
(94)
$$\left( {1 - \mu \nabla^{2} } \right)\,\left\{ {\begin{array}{*{20}c} {R_{xm} } \\ {R_{ym} } \\ \end{array} } \right\} = \left\{ {\begin{array}{*{20}c} {\left( {D_{55} - 4F_{55} /h^{2} } \right)w_{m} ,_{x} + \left( {D_{55} - 4F_{55} /h^{2} } \right)\phi_{xm} } \\ {\left( {D_{44} - 4F_{44} /h^{2} } \right)w_{m} ,_{y} + \left( {D_{44} - 4F_{44} /h^{2} } \right)\phi_{ym} } \\ \end{array} } \right\},$$
(95)

where \(F_{ij} = \int_{\, - h/2}^{\,h/2} {\,Q_{ij} } \,z^{4} \,dz\) and \(H_{ij} = \int_{\, - h/2}^{\,h/2} {\,Q_{ij} } \,z^{6} \,dz\;\left( {i{,}j = 1,2,{\text{and}}\;6} \right).\)

Appendix B: Euler–Lagrange equations of the mth-layer GS based on the RSDPT in terms of displacement components

Substituting Eqs. (92)–(95) in Eqs. (66)–(68), the Euler–Lagrange equations of the mth-layer GS based on the RSDPT can be expressed in terms of displacement components as follows:

$$\left[ {\begin{array}{*{20}c} {L_{11} } &\quad {L_{12} } &\quad {L_{13} } \\ {L_{21} } &\quad {L_{22} } &\quad {L_{23} } \\ {L_{31} } &\quad {L_{32} } &\quad {L_{33} } \\ \end{array} } \right]\,\left\{ {\begin{array}{*{20}c} {w_{m} } \\ {\phi_{xm} } \\ {\phi_{ym} } \\ \end{array} } \right\} = \left( {1 - \mu \nabla^{2} } \right)\left[ {\begin{array}{*{20}c} {\hat{L}_{11} } &\quad {\hat{L}_{12} } &\quad {\hat{L}_{13} } \\ {\hat{L}_{21} } &\quad {\hat{L}_{22} } &\quad 0 \\ {\hat{L}_{31} } &\quad 0 &\quad {\hat{L}_{33} } \\ \end{array} } \right]\,\left\{ {\begin{array}{*{20}c} {w_{m} } \\ {\phi_{xm} } \\ {\phi_{ym} } \\ \end{array} } \right\},$$
(96)

where

$$\begin{gathered} L_{11} = - \left[ {16H_{11} /\left( {9h^{4} } \right)} \right]\partial_{xxxx} - \left[ {16\left( {2H_{12} + 4H_{66} } \right)/\left( {9h^{4} } \right)} \right]\partial_{xxyy} - \left[ {16H_{22} /\left( {9h^{4} } \right)} \right]\partial_{yyyy} \hfill \\ \,\quad \quad \quad \quad \quad \quad \quad + \left( {A_{55} - 8D_{55} /h^{2} + 16F_{55} /h^{4} } \right)\partial_{xx} + \left( {A_{44} - 8D_{44} /h^{2} + 16F_{44} /h^{4} } \right)\partial_{yy} , \hfill \\ \end{gathered}$$
$$\begin{gathered} L_{12} = \left[ {4/\left( {3h^{2} } \right)} \right]\left[ {F_{11} - 4H_{11} /\left( {3h^{2} } \right)} \right]\partial_{xxx} + \left[ {4/\left( {3h^{2} } \right)} \right]\left[ {F_{12} + 2F_{66} - 4H_{12} /\left( {3h^{2} } \right) - 8H_{66} /\left( {3h^{2} } \right)} \right]\partial_{xyy} \hfill \\ \quad \quad \quad + \left( {A_{55} - 8D_{55} /h^{2} + 16F_{55} /h^{4} } \right)\partial_{x} , \hfill \\ \end{gathered}$$
$$\begin{aligned} L_{13} = & \left[ {4/\left( {3h^{2} } \right)} \right]\left[ {F_{22} - 4H_{22} /\left( {3h^{2} } \right)} \right]\partial_{yyy} + \left[ {4/\left( {3h^{2} } \right)} \right]\left[ {F_{12} + 2F_{66} - 4H_{12} /\left( {3h^{2} } \right) - 8H_{66} /\left( {3h^{2} } \right)} \right]\partial_{xxy} \\ & + \left( {A_{44} - 8D_{44} /h^{2} + 16F_{44} /h^{4} } \right)\partial_{y} , \\ L_{21} = & - L_{12} , \\ L_{22} = & \left[ {D_{11} - 8F_{11} /\left( {3h^{2} } \right) + 16H_{11} /\left( {9h^{4} } \right)} \right]\partial_{xx} + \left[ {D_{66} - 8F_{66} /\left( {3h^{2} } \right) + 16H_{66} /\left( {9h^{4} } \right)} \right]\partial_{yy} \\ & - \left( {A_{55} - 8D_{55} /h^{2} + 16F_{55} /h^{4} } \right), \\ L_{23} = & \left[ {D_{12} + D_{66} - 8F_{12} /\left( {3h^{2} } \right) - 8F_{66} /\left( {3h^{2} } \right) + 16H_{12} /\left( {9h^{4} } \right) + 16H_{66} /\left( {9h^{4} } \right)} \right]\partial_{xy} , \\ L_{31} = & - L_{13} ,L_{32} = L_{23} , \\ \end{aligned}$$
$$\begin{aligned} L_{33} = & \left[ {D_{66} - 8F_{66} /\left( {3h^{2} } \right) + 16H_{66} /\left( {9h^{4} } \right)} \right]\partial_{xx} + \left[ {D_{22} - 8F_{22} /\left( {3h^{2} } \right) + 16H_{22} /\left( {9h^{4} } \right)} \right]\partial_{yy} \\ & - \left( {A_{44} - 8D_{44} /h^{2} + 16F_{44} /h^{4} } \right), \\ \hat{L}_{11} = & I_{0} \partial_{tt} - \left[ {16I_{6} /\left( {9h^{4} } \right)} \right]\partial_{xxtt} - \left[ {16I_{6} /\left( {9h^{4} } \right)} \right]\partial_{yytt} ,\hat{L}_{12} = \left[ {4I_{4} /\left( {3h^{2} } \right) - 16I_{6} /\left( {9h^{4} } \right)} \right]\partial_{xtt} , \\ \hat{L}_{13} = & \left[ {4I_{4} /\left( {3h^{2} } \right) - 16I_{6} /\left( {9h^{4} } \right)} \right]\partial_{ytt} ,\hat{L}_{21} = - \hat{L}_{12} ,\hat{L}_{22} = \left[ {I_{2} - 8I_{4} /\left( {3h^{2} } \right) + 16I_{6} /\left( {9h^{4} } \right)} \right]\partial_{tt} , \\ \hat{L}_{31} = & - \hat{L}_{13} ,\hat{L}_{33} = \left[ {I_{2} - 8I_{4} /\left( {3h^{2} } \right) + 16I_{6} /\left( {9h^{4} } \right)} \right]\partial_{tt} . \\ \end{aligned}$$

Appendix C: Expressions of the generalized moment and shear force resultants of the mth-layer GS based on various nonlocal advanced shear deformation theories

By using Eqs. (64) and (65), the generalized moment and shear force resultants of the mth-layer GS based on various nonlocal advanced shear deformation theories can be expressed in terms of displacement components as follows:

$$\left( {1 - \mu \,\nabla^{2} } \right)\,\left\{ {\begin{array}{*{20}c} {M_{xm} } \\ {M_{ym} } \\ {M_{xym} } \\ \end{array} } \right\} = \left\{ {\begin{array}{*{20}c} {B_{11f} \,\phi_{xm} ,_{x} + B_{12f} \,\phi_{ym} ,_{y} - D_{11} \,w_{m} ,_{xx} - D_{12} \,w_{m} ,_{yy} } \\ {B_{12f} \,\phi_{xm} ,_{x} + B_{22f} \,\phi_{ym} ,_{y} - D_{12} \,w_{m} ,_{xx} - D_{22} \,w_{m} ,_{yy} } \\ {B_{66f} \,\phi_{xm} ,_{y} + B_{66f} \,\phi_{ym} ,_{x} - 2D_{66} w_{m} ,_{xy} } \\ \end{array} } \right\},$$
(97)
$$\left( {1 - \mu \nabla^{2} } \right)\,\left\{ {\begin{array}{*{20}c} {P_{xm} } \\ {P_{ym} } \\ {P_{xym} } \\ \end{array} } \right\} = \left\{ {\begin{array}{*{20}c} {F_{11f} \,\phi_{xm} ,_{x} + F_{12f} \,\phi_{ym} ,_{y} - B_{11f} \,w_{m} ,_{xx} - B_{12f} \,w_{m} ,_{yy} } \\ {F_{12f} \,\phi_{xm} ,_{x} + F_{22f} \,\phi_{ym} ,_{y} - B_{12f} \,w_{m} ,_{xx} - B_{22f} \,w_{m} ,_{yy} } \\ {F_{66f} \,\phi_{xm} ,_{y} + F_{66f} \,\phi_{ym} ,_{x} - 2B_{66f} \,w_{m} ,_{xy} } \\ \end{array} } \right\},$$
(98)
$$\left( {1 - \mu \nabla^{2} } \right)\,\left\{ {\begin{array}{*{20}c} {Q_{xm} } \\ {Q_{ym} } \\ \end{array} } \right\} = \left\{ {\begin{array}{*{20}c} {H_{55f} \,\phi_{xm} } \\ {H_{44f} \,\phi_{ym} } \\ \end{array} } \right\},$$
(99)

where \(B_{ijf} = \int_{\, - h/2}^{\,h/2} {\,Q_{ij} } \,z\,f\,dz,F_{ijf} = \int_{\, - h/2}^{\,h/2} {\,Q_{ij} } f^{2} \,dz,\) and \(H_{ijf} = \int_{\, - h/2}^{\,h/2} {\,Q_{ij} } \left( {df/dz} \right)^{2} \,dz.\)

Appendix D: Euler–Lagrange equations of the mth-layer GS based on various advanced shear deformation plate theories in terms of displacement components

Substituting Eqs. (97)–(99) in Eqs. (85) and (87), the Euler–Lagrange equations of the mth-layer GS based on various advanced shear deformation plate theories can be expressed in terms of displacement components as follows:

$$\left[ {\begin{array}{*{20}c} {L_{11} } &\quad {L_{12} } &\quad {L_{13} } \\ {L_{21} } &\quad {L_{22} } &\quad {L_{23} } \\ {L_{31} } &\quad {L_{32} } &\quad {L_{33} } \\ \end{array} } \right]\,\left\{ {\begin{array}{*{20}c} {w_{m} } \\ {\phi_{xm} } \\ {\phi_{ym} } \\ \end{array} } \right\} = \left( {1 - \mu \nabla^{2} } \right)\left[ {\begin{array}{*{20}c} {\hat{L}_{11} } &\quad {\hat{L}_{12} } &\quad {\hat{L}_{13} } \\ {\hat{L}_{21} } &\quad {\hat{L}_{22} } &\quad 0 \\ {\hat{L}_{31} } &\quad 0 &\quad {\hat{L}_{33} } \\ \end{array} } \right]\,\left\{ {\begin{array}{*{20}c} {w_{m} } \\ {\phi_{xm} } \\ {\phi_{ym} } \\ \end{array} } \right\},$$
(100)

where

$$\begin{gathered} L_{11} = - D_{11} \partial_{xxxx} - \left( {2D_{12} + 4D_{66} } \right)\partial_{xxyy} - D_{22} \partial_{yyyy} ,L_{12} = B_{11f} \,\partial_{xxx} + \left( {B_{12f} + 2B_{66f} } \right)\partial_{xyy} , \hfill \\ L_{13} = \left( {B_{12f} + 2B_{66f} } \right)\,\partial_{xxy} + B_{22f} \,\partial_{yyy} ,L_{21} = - L_{12} , \hfill \\ L_{22} = F_{11f} \,\partial_{xx} + F_{66f} \,\partial_{yy} - H_{55f} ,L_{23} = \left( {F_{12f} + F_{66f} } \right)\partial_{xy} , \hfill \\ L_{31} = - L_{13} ,L_{32} = L_{23} ,L_{33} = F_{66} \,\partial_{xx} + F_{22f} \,\partial_{yy} - H_{44f} , \hfill \\ \hat{L}_{11} = I_{0} \partial_{tt} - I_{2} \,\partial_{xxtt} - I_{2} \,\partial_{yytt} ,\hat{L}_{12} = \hat{I}_{1} \,\partial_{xtt} , \hfill \\ \hat{L}_{13} = \hat{I}_{1} \,\partial_{ytt} ,\hat{L}_{21} = - \hat{L}_{12} ,\hat{L}_{22} = \overline{I}_{0} \,\partial_{tt} , \hfill \\ \hat{L}_{31} = - \hat{L}_{13} ,\hat{L}_{33} = \overline{I}_{0} \,\partial_{tt} . \hfill \\ \end{gathered}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, CP., Hu, HX. A review of dynamic analyses of single- and multi-layered graphene sheets/nanoplates using various nonlocal continuum mechanics-based plate theories. Acta Mech 232, 4497–4531 (2021). https://doi.org/10.1007/s00707-021-03068-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-03068-4

Navigation