Skip to main content
Log in

Axisymmetric thermoelastic contact of an FGM-coated half-space under a rotating punch

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper investigates the axisymmetric thermoelastic contact of a functionally graded material (FGM) coated half-space. A rigid insulated punch rotates on the surface of the FGM coating with a constant angular velocity. The frictional heating is generated within the contact region. The thermoelastic properties of the coating vary exponentially along the thickness direction. By using the Hankel integral transform, the problem is reduced to Cauchy singular integral equations, which are solved numerically to obtain the normal contact stress, radial stress and surface temperature. The effects of the friction coefficient, angular velocity, gradient index, coating thickness and punch geometry on the surface thermoelastic contact characteristics are investigated and discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  2. Baber, J.R., Ciavarellab, M.: Contact mechanics. Int. J. Solids Struct. 37, 29–43 (2000)

    Article  MathSciNet  Google Scholar 

  3. Suresh, S., Mortensen, A.: Fundamentals of Functionally Graded Materials: Processing and Thermomechanical Behavior of Graded Metals and Metal-Ceramic Composites. IOM Communications Ltd, London (1998)

    Google Scholar 

  4. Suresh, S., Olsson, M., Padture, N.P., Jitcharoen, J.: Engineering the resistance to sliding-contact damage through controlled gradients in elastic properties at contact surfaces. Acta. Mater. 47, 3915–3926 (1999)

    Article  Google Scholar 

  5. Pender, D.C., Padture, N.P., Giannakopoulos, A.E., Suresh, S.: Gradients in elastic modulus for improved contact-damage resistance. Part I: t984he silicon nitride-oxynitride glass system. Acta. Mater. 49, 3255–62 (2001)

    Article  Google Scholar 

  6. Suresh, S.: Graded materials for resistance to contact deformation and damage. Science 292, 2447–2451 (2001)

    Article  Google Scholar 

  7. Chen, S.H., Yan, C., Soh, A.: Adhesive behavior of two-dimensional power-law graded materials. Int. J. Solids Struct. 46, 3398–3404 (2009)

    Article  MATH  Google Scholar 

  8. Ziegler, T., Kraft, T.: Functionally graded materials with a soft surface for improved indentation resistance: layout and corresponding design principles. Comput. Mater. Sci. 86, 88–92 (2014)

    Article  Google Scholar 

  9. Jahedi, R., Adibnazari, S.: Multi layered finite element analysis of graded coatings in frictional rolling contact. Int. J. Adv. Manuf. Tech. 8, 1–12 (2015)

    Google Scholar 

  10. Yadollah, A., Beheshti, A., Guler, M.A., El-Borgi, S., Polycarpou, A.A.: Sliding contact analysis of functionally graded coating/substrate system. Mech. Mater. 94, 142–155 (2016)

    Article  Google Scholar 

  11. Chen, P.J., Chen, S.H., Yao, Y.: Nonslipping contact between a mismatch film and a finite-thickness graded substrate. J. Appl. Mech. 83, 021007 (2016)

    Article  Google Scholar 

  12. Chen, P.J., Chen, S.H., Wang, G., Gao, F.: The interface behavior of a thin piezoelectric film bonded to a graded substrate. Mech. Mater. 127, 26–38 (2018)

    Article  Google Scholar 

  13. Chen, P.J., Chen, S.H., Peng, J., Gao, F., Liu, H.: The interface behavior of a thin film bonded imperfectly to a finite thickness gradient substrate. Eng. Mech. 217, 106592 (2019)

    Google Scholar 

  14. Guler, M.A., Erdogan, F.: Contact mechanics of graded coatings. Int. J. Solids Struct. 41, 3865–3889 (2004)

    Article  MATH  Google Scholar 

  15. Guler, M.A., Erdogan, F.: Contact mechanics of two deformable elastic solids with graded coatings. Mech. Mater. 38, 633–647 (2006)

    Article  Google Scholar 

  16. Guler, M.A., Erdogan, F.: The frictional sliding contact problems of rigid parabolic and cylindrical stamps on graded coatings. Int. J. Mech. Sci. 49, 161–182 (2007)

    Article  Google Scholar 

  17. Guler, M.A., Ozturk, M., Kucuksucu, A.: The frictional contact problem of a rigid stamp sliding over a graded medium. Key. Eng. Mater. 681(155), 174 (2016)

    Google Scholar 

  18. EI-Borgi, S., Abdelmoula, R., Keer, L.: A receding contact problem between a functionally graded layer and a homogeneous substrate Int. J. Solids Struct. 43(658), 674 (2006)

    MATH  Google Scholar 

  19. Elloumi, R., Kallel-Kamoun, I., EI-Borgi, S.: A fully coupled partial slip contact problem in a graded half-plane. Mech Mater 42(417), 42 (2010)

    Google Scholar 

  20. Aizikovich, S., Alexandrov, M.V.M., Kalker, J.J., Krenev, L.I., Trubchik, I.S.: Analytical solution of the spherical indentation problem for a half-space with gradients with the gradients with the depth elastic properties. Int. J. Solids Struct. 10, 2745–2772 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Aizikovich, S.M., Krenev, L.I., Trubchik, I.S.: The deformation of a half-space with a gradient elastic coating under arbitrary axisymmetric loading. J. Appl. Math. Mech. 72, 461–467 (2008)

    Article  MATH  Google Scholar 

  22. Aizikovich, S.M., Vasiliev, A., Seleznev, N.: Inverse analysis for evaluation of the shear modulus of inhomogeneous media by torsion experiments. Int. J. Eng. Sci. 48, 936–942 (2010)

    Article  Google Scholar 

  23. Ke, L.L., Wang, Y.S.: Two-dimensional contact mechanics of functionally graded materials with arbitrary spatial variations of material properties. Int. J. Solids Struct. 43, 5779–5798 (2006)

    Article  MATH  Google Scholar 

  24. Ke, L.L., Wang, Y.S.: Two-dimensional sliding frictional contact of functionally graded materials. Eur. J. Mech. A/Solid. 26, 171–188 (2007)

    Article  MATH  Google Scholar 

  25. Barik, S.P., Kanoria, M., Chaudhuri, P.K.: Steady state thermoelastic contact problem in a functionally graded material. Int. J. Eng. Sci. 46, 775–789 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Choi, H.J., Paulino, G.H.: Thermoelastic contact mechanics for a flat punch sliding over a graded coating/substrate system with frictional heat generation. J. Mech. Phys. Solids 56, 1673–1692 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, J., Ke, L.L., Wang, Y.S.: Two-dimensional thermoelastic contact problem of functionally graded materials involving frictional heating. Int. J. Solids Struct. 48, 2536–2548 (2011)

    Article  Google Scholar 

  28. Chen, P.J., Chen, S.H., Peng, Z.L.: Thermo-contact mechanics of a rigid cylindrical punch sliding on a finite graded layer. Acta. Mech. 223, 2647–2665 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Chen, P.J., Chen, S.H.: Thermo-mechanical contact behavior of a finite graded layer under a sliding punch with heat generation. Int. J. Solids Struct. 50, 1108–1119 (2013)

    Article  Google Scholar 

  30. Myslinski, A.: Thermoelastic rolling contact problems for multilayer materials. Nonlinear Aanl-real. 22, 619–631 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Balci, M.N., Dag, S., Yildirim, B.: Subsurface stresses in graded coatings subjected to frictional contact with heat generation. J. Therm. Stresses 40, 517–534 (2017)

    Article  Google Scholar 

  32. Nili, A., Adibnazari, S., Karimzadeh, A.: Stress field in the thermoelastic rolling contact of graded coatings. Arch. Appl. Mech. 88, 1805–1814 (2018)

    Article  Google Scholar 

  33. Zhang, X., Liu, J., Shen, H.M.: Elastic response of coating materials in thermoelasticity: indented by a hot punch. J. Therm. Stresses 42, 475–489 (2019)

    Article  Google Scholar 

  34. Zhou, Y.T., Zhang, C.Z., Zhong, Z.: Transient thermo-electro-elastic contact analysis of a sliding punch acting on a functionally graded piezoelectric strip under non-fourier heat conduction. Eur. J. Mech. A-Solid. 73, 90–100 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Grilitski, D.V., Shelestovskii, B.G.: The axisymmetric contact problem of thermoelasticity for a transversely isotropic half-space. Int. Appl. Mech. 6, 807–811 (1970)

    Google Scholar 

  36. Barber, J.R.: Thermoelastic contact of a rotating sphere and a half-space. Wear 35, 283–289 (1975)

    Article  Google Scholar 

  37. Barber, J.R., (1976) Some thermoelastic contact problems involving frictional heating. J. Mech. Appl. Math. 29: l-13

  38. Yevtushenko, A., Kulchytsky-Zhyhailo, R.: Two axi-symmetrical contact problems with the steady-state frictional heating. J. Theor. App. Mech-Pol. 34, 768–779 (1996)

    Google Scholar 

  39. Kulchytsky-Zhyhailo, R.: Axisymmetrical contact problem with heat generation in rotating heterogeneous body. J. Frict. Wear 22, 18–27 (2001)

    MATH  Google Scholar 

  40. Perkowski, D.M.: On axisymmetric heat conduction problem for FGM layer on homogeneous substrate. Int. Comm. Heat Mass. Transf. 57, 157–162 (2014)

    Article  Google Scholar 

  41. Tokovyy, Y.V., Ma, C.C.: Three-dimensional temperature and thermal stress analysis of an inhomogeneous layer. J. Therm. Stresses 36, 790–808 (2013)

    Article  Google Scholar 

  42. Tokovyy, Y.V., Ma, C.C.: Analytical solutions to the axisymmetric elasticity and thermoelasticity problems for an arbitrarily inhomogeneous layer. Int. J. Eng. Sci. 92, 1–17 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kulchytsky-Zhyhailo, R., Bajkowski, A.S.: Axisymmetrical problem of thermoelasticity for half space with gradient coating. Int. J. Mech. Sci. 106, 62–71 (2016)

    Article  Google Scholar 

  44. Perkowski, D.M., Kulchytsky-Zhyhailo, R., Kołodziejczyk, W.: On axisymmetric heat conduction problem for multilayer graded coated half-space. J. Theor. App. Mech-Pol. 56, 147–156 (2018)

    Article  Google Scholar 

  45. Kulchytsky-Zhyhailo, R., Matysiak, S.J., Bajkowski, A.S.: Semi-analytical solution of three-dimensional thermoelastic problem for half-space with gradient coating. J. Therm. Stresses 41, 1169–1181 (2018)

    Article  Google Scholar 

  46. Andrews, G.E., Richard, A., Ranjan, R.: Special Functions. Cambridge University Press, London (2000)

    MATH  Google Scholar 

  47. Ozturk, M., Erdogan, F.: Axisymmetric crack problem in bonded materials with a graded interfacial region. Int. J. Solids Struct. 33, 193–219 (1996)

    Article  MATH  Google Scholar 

  48. Erdogan, F., Gupta, G.D.: On the numerical solution of singular integral equations. Quart. Appl. Math. 29, 525–534 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  49. Civelek, M.B. (1972) The axisymmetric contact problem for an elastic layer on a frictionless half-space, Ph.D. thesis. Lehigh University, Bethlehem

  50. Fujimoto, T., Noda, N.: Influence of the compositional profile of functionally graded material on the crack path under thermal shock. J. Am. Ceram. Soc. 84, 1480–1486 (2001)

    Article  Google Scholar 

  51. Liu, T.J., Wang, Y.S.: Axisymmetric frictionless contact problem of a functionally graded coating with exponentially varying modulus. Acta. Mech. 199, 151–165 (2008)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported by the National Natural Science Foundation of China under Grant Nos.11725207, 12021002 and 12011530056. Jing Liu gratefully acknowledges the China Scholarship Council (CSC) for supporting her visiting scholarship at the Chair of Structural Mechanics, Department of Civil Engineering, School of Science and Technology, University of Siegen, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liaoliang Ke.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Appendix A

Appendix A

1.1 Components of the matrices \(\left[ {M(s,h)} \right]\) and \(\left[ {H(s,h)} \right]\)

The components of the matrices \(\left[ {M(s,h)} \right]\) and \(\left[ {H(s,h)} \right]\) in Eq. (29) are given by the following expressions:

$$ M_{1i} = e^{{ - m_{i} h}} ,\;M_{15} = - e^{ - sh} ,\;M_{16} = he^{ - sh}, $$
(48)
$$ M_{2i} = a_{i} {\text{e}}^{{ - m_{i} h}} ,\;M_{25} = e^{ - sh} ,\;M_{26} = - [{{(3 - 4\nu_{2} )} \mathord{\left/ {\vphantom {{(3 - 4\nu_{2} )} s}} \right. \kern-\nulldelimiterspace} s} + h]e^{ - sh}, $$
(49)
$$ M_{3i} = \frac{{{\text{e}}^{{ - m_{i} h}} }}{{1 - 2\nu_{1} }}[(1 - \nu_{1} )a_{i} m_{i} + \nu_{1} s],\;M_{35} = {{se^{(\beta - s)h} \mu_{2} } \mathord{\left/ {\vphantom {{se^{(\beta - s)h} \mu_{2} } {\mu_{1} }}} \right. \kern-\nulldelimiterspace} {\mu_{1} }}, $$
(50)
$$ M_{36} = {{ - (2 - 2\nu_{2} + hs)e^{(\beta - s)h} \mu_{2} } \mathord{\left/ {\vphantom {{ - (2 - 2\nu_{2} + hs)e^{(\beta - s)h} \mu_{2} } {\mu_{1} }}} \right. \kern-\nulldelimiterspace} {\mu_{1} }}, $$
(51)
$$ M_{4i} = (m_{i} - a_{i} s){\text{e}}^{{ - m_{i} h}} ,\;M_{45} = {{ - 2se^{(\beta - s)h} \mu_{2} } \mathord{\left/ {\vphantom {{ - 2se^{(\beta - s)h} \mu_{2} } {\mu_{1} }}} \right. \kern-\nulldelimiterspace} {\mu_{1} }},\;M_{36} = {{ - 2(2\nu_{2} - 1 - hs)e^{(\beta - s)h} \mu_{2} } \mathord{\left/ {\vphantom {{ - 2(2\nu_{2} - 1 - hs)e^{(\beta - s)h} \mu_{2} } {\mu_{1} }}} \right. \kern-\nulldelimiterspace} {\mu_{1} }}, $$
(52)
$$ M_{6i} = \mu_{1} (m_{i} - a_{i} s),\;i = 1,2,3,4, $$
(53)
$$ M_{55} = M_{56} = M_{65} = M_{66} = 0, $$
(54)
$$ H_{1l} = \frac{{1 + \nu_{1} }}{{1 - \nu_{1} }}\alpha_{1} \frac{{d_{1l} }}{{d_{0l} }}e^{{ - n_{l} h}} ,\;H_{2l} = \frac{{1 + \nu_{1} }}{{1 - \nu_{1} }}\alpha_{1} \frac{{d_{2l} }}{{d_{0l} }}e^{{ - n_{l} h}} ,\;H_{13} = H_{23} = \frac{{ - \alpha_{2} (1 + \nu_{2} )}}{s}e^{ - sh}, $$
(55)
$$ H_{3l} = \frac{{1 + \nu_{1} }}{{1 - \nu_{1} }}\alpha_{1} \frac{{s^{2} (n_{l}^{2} - s^{2} )}}{{d_{0l} }}e^{{ - n_{l} h}} \;H_{4l} = \frac{{1 + \nu_{1} }}{{1 - \nu_{1} }}\alpha_{1} \frac{{2s(n_{l} + \beta )(s^{2} - n_{l}^{2} )}}{{d_{0l} }}e^{{ - n_{l} h}}, $$
(56)
$$ H_{5l} = \frac{{2\mu_{1} (1 + \nu_{1} )}}{{1 - \nu_{1} }}\alpha_{1} \frac{{s^{2} (n_{l}^{2} - s^{2} )}}{{d_{0l} }},\;H_{6l} = \frac{{\mu_{1} (1 + \nu_{1} )}}{{1 - \nu_{1} }}\alpha_{1} \frac{{2s(n_{l} + \beta )(s^{2} - n_{l}^{2} )}}{{d_{0l} }},\;l = 1,2, $$
(57)
$$ H_{33} = H_{43} = H_{53} = H_{63} = 0. $$
(58)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Ke, L. & Zhang, C. Axisymmetric thermoelastic contact of an FGM-coated half-space under a rotating punch. Acta Mech 232, 2361–2378 (2021). https://doi.org/10.1007/s00707-021-02940-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-02940-7

Navigation