Skip to main content
Log in

Frictional contact problem of a coated half plane pressed by a rigid punch with coupled stress elasticity

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper considers the size-dependent plane frictional contact problem of a homogeneous coated half-plane indented by a rigid punch based on the couple stress elasticity. Using the Fourier integral transform technique in addition to the boundary and compatibility conditions, the mixed-boundary value problem is converted into a singular integral equation of the second kind. The integral equation is further derived and normalized for the cylindrical and flat punch case profiles. Applying the Gauss–Jacobi integration formula, the resulting singular integral equation is reduced to a system of algebraic equations. The obtained results are first validated based on those published for the case of a frictionless contact problem of a half-plane indented by rigid cylindrical and flat punches and solved based on the couple stress theory. A detailed parametric study is then performed to investigate the effect of the characteristic material length, the friction coefficient, the layer height, the shear modulus, the indentation load and Poisson’s ratio on the contact and in-plane stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  2. Fischer-Cripps, A.C., Nicholson, D.W.: Nanoindentation. Mechanical engineering series. Appl. Mech. Rev. 57(2), B12–B12 (2004)

    Article  Google Scholar 

  3. Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42(2), 475–487 (1994)

    Article  Google Scholar 

  4. Zhong, L.: Deformation behavior and microstructure effect in 2124Al/SiCp composite. J. Compos. Mater. 34(2), 101–115 (2000)

    Google Scholar 

  5. Huber, N., Nix, W.D., Gao, H.: Identification of elastic-plastic material parameters from pyramidal indentation of thin films. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 458(2023), 1593–1620 (2002)

    Article  MATH  Google Scholar 

  6. Liu, D., He, Y., Tang, X., Ding, H., Hu, P., Cao, P.: Size effects in the torsion of microscale copper wires: experiment and analysis. Scr. Mater. 66(6), 406–409 (2012)

    Article  Google Scholar 

  7. Kathavate, V.S., Kumar, B.P., Singh, I., Prasad, K.E.: Analysis of indentation size effect (ISE) in nanoindentation hardness in polycrystalline PMN-PT piezoceramics with different domain configurations. Ceram. Int. 47(9), 11870–11877 (2021)

    Article  Google Scholar 

  8. Pharr, G.M., Oliver, Warren C., Brotzen, F.R.: On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J. Mater. Res. 7(3), 613–617 (1992)

    Article  Google Scholar 

  9. Gourgiotis, P.A., Zisis, T., Baxevanakis, K.P.: Analysis of the tilted flat punch in couple-stress elasticity. Int. J. Solids Struct. 85, 34–43 (2016)

    Article  Google Scholar 

  10. Mindlin, R.D.: Influence of couple-stresses on stress concentrations. Exp. Mech. 3(1), 1–7 (1963)

    Article  MathSciNet  Google Scholar 

  11. Toupin, R.A.: Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal. 17(2), 85–112 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zisis, T., Gourgiotis, P.A., Baxevanakis, K.P., Georgiadis, H.G.: Some basic contact problems in couple stress elasticity. Int. J. Solids Struct. 51(11–12), 2084–2095 (2014)

    Article  Google Scholar 

  13. Gourgiotis, P., Zisis, T.: Two-dimensional indentation of microstructured solids characterized by couple-stress elasticity. J. Strain Anal. Eng. Des. 51(4), 318–331 (2016)

    Article  Google Scholar 

  14. Zisis, T.: Burmister’s problem extended to a microstructured layer. J. Mech. Mater. Struct. 13(2), 203–223 (2018)

    Article  MathSciNet  Google Scholar 

  15. Zisis, T.: Anti-plane loading of microstructured materials in the context of couple stress theory of elasticity: half-planes and layers. Arch. Appl. Mech. 88(1), 97–110 (2018)

    Article  Google Scholar 

  16. Karuriya, A.N., Bhandakkar, T.K.: Plane strain indentation on finite thickness bonded layer in couple stress elasticity. Int. J. Solids Struct. 108, 275–288 (2017)

    Article  Google Scholar 

  17. Wang, Y., Shen, H., Zhang, X., Zhang, B., Liu, J., Li, X.: Semi-analytical study of microscopic two-dimensional partial slip contact problem within the framework of couple stress elasticity: cylindrical indenter. Int. J. Solids Struct. 138, 76–86 (2018)

    Article  Google Scholar 

  18. Wang, Y., Zhang, X., Shen, H., Liu, J., Zhang, B., Xu, S.: Three-dimensional contact analysis with couple stress elasticity. Int. J. Mech. Sci. 153, 369–379 (2019)

    Article  Google Scholar 

  19. Gourgiotis, P.A., Zisis, T., Giannakopoulos, A.E., Georgiadis, H.G.: The Hertz contact problem in couple-stress elasticity. Int. J. Solids Struct. 168, 228–237 (2019)

    Article  Google Scholar 

  20. Li, P., Liu, T.-J.: The two-dimensional adhesive contact problem in the theory of couple stress elasticity. J. Adhes. Sci. Technol. 34(10), 1062–1082 (2020)

    Google Scholar 

  21. Li, P., Liu, T.-J.: Axisymmetric adhesive contact of multi-layer couple-stress elastic structures involving graded nanostructured materials. Appl. Math. Model. 111, 501–520 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  22. Le, T.M., Wongviboonsin, W., Lawongkerd, J., Bui, T.Q., Rungamornrat, J.: Influence of surface and couple stresses on response of elastic substrate under tilted flat indenter. Appl. Math. Model. 104, 644–665 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  23. Radi, E.: A loaded beam in full frictionless contact with a couple stress elastic half-plane: effects of non-standard contact conditions. Int. J. Solids Struct. 232, 111175 (2021)

    Article  Google Scholar 

  24. Lewandowski-Szewczyk, M.J., Stupkiewicz, S.: Non-standard contact conditions in generalized continua: microblock contact model for a cosserat body. Int. J. Solids Struct. 202, 881–894 (2020)

    Article  Google Scholar 

  25. Nikolopoulos, S., Gourgiotis, P.A., Zisis, T.: Analysis of the tilted shallow wedge problem in couple-stress elasticity. J. Elast. 144(2), 205–221 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zisis, Th., Gourgiotis, P.A.: Cylindrical indentation in micropolar elasticity. Appl. Math. Model. 104, 373–385 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  27. Song, H.-X., Ke, L.-L., Wang, Y.-S.: Sliding frictional contact analysis of an elastic solid with couple stresses. Int. J. Mech. Sci. 133, 804–816 (2017)

    Article  Google Scholar 

  28. Song, H., Ke, L.-L., Wang, Y.-S., Yang, J., Jiang, H.: Two-dimensional frictionless contact of a coated half-plane based on couple stress theory. Int. J. Appl. Mech. 10(05), 1850049 (2018)

    Article  Google Scholar 

  29. Çömez, I., El-Borgi, S.: Sliding frictional contact problem of a layer indented by a rigid punch in couple stress elasticity. Math. Mech. Solids 10812865221080551 (2022)

  30. Erdogan, F., Gupta, G.D., Cook, T.S.: Numerical solution of singular integral equations. In: Methods of Analysis and Solutions of Crack Problems, pp. 368–425. Springer (1973)

  31. Çömez, I., Erdöl, R.: Frictional contact problem of a rigid stamp and an elastic layer bonded to a homogeneous substrate. Arch. Appl. Mech. 83(1), 15–24 (2013)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The second author is thankful to Texas A &M University at Qatar for the research funding. The assistance of Mrs. Hedia Layouni El-Borgi’s in typesetting the Latex document is gratefully acknowledged by the authors.

Funding

Open Access funding was provided by the Qatar National Library.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İsa Çömez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

1.1 Expressions of the displacements in terms of \(A_j\), \(B_j\), and \(C_j\) \((j=1, \ldots ,4)\)

$$\begin{aligned} u_1 (x,y)&= \frac{1}{{2\pi }}\int \limits _{ - \infty }^\infty {\frac{1}{{2\mu _1 }}\xi \left( {IA_1 \hbox {e}^{ - \xi y} + \frac{1}{\xi }IA_2 \hbox {e}^{ - \xi y} \left( { - 2 + 2\nu _1 + \xi y} \right) + IA_3 \hbox {e}^{\xi y} + \frac{1}{\xi }IA_4 \hbox {e}^{\xi y} \left( {2 - 2\nu _1 + \xi y} \right) } \right. } \nonumber \\&\quad \left. + {B_1 \hbox {e}^{ - \xi y} - B_2 \hbox {e}^{\xi y} - \frac{1}{\xi }\gamma B_3 \hbox {e}^{\gamma y} + \frac{1}{\xi }\gamma B_4 \hbox {e}^{ - \gamma y} } \right) \hbox {e}^{ - I\xi x} \hbox {d}\xi \end{aligned}$$
(A.1a)
$$\begin{aligned} v_1 (x,y)&= \frac{1}{{2\pi }}\int \limits _{ - \infty }^\infty {\frac{1}{{2\mu _1 }}\xi \left( {A_1 \hbox {e}^{ - \xi y} + \frac{1}{\xi }A_2 \hbox {e}^{ - \xi y} \left( {1 - 2\nu _1 + \xi y} \right) - A_3 \hbox {e}^{\xi y} - \frac{1}{\xi }A_4 \hbox {e}^{\xi y} \left( { - 1 + 2\nu _1 + \xi y} \right) } \right. } \nonumber \\&\quad \left. { - I\left( {B_1 \hbox {e}^{ - \xi y} + B_2 \hbox {e}^{\xi y} + B_3 \hbox {e}^{\gamma y} + B_4 \hbox {e}^{ - \gamma y} } \right) } \right) \hbox {e}^{ - I\xi x} \hbox {d}\xi \end{aligned}$$
(A.1b)
$$\begin{aligned} \omega _1 (x,y)&= \frac{1}{{2\pi }}\int \limits _{ - \infty }^\infty {\frac{1}{{2\mu _1 }}\left( {2I\xi ( - 1 + \nu _1 )A_2 \hbox {e}^{ - \xi y} + 2I\xi ( - 1 + \nu _1 )A_4 \hbox {e}^{\xi y} + \frac{1}{2}B_3 \left( {\gamma ^2 - \xi ^2 } \right) \hbox {e}^{\gamma y} } \right. } \nonumber \\&\quad \left. + {\frac{1}{2}B_4 \left( {\gamma ^2 - \xi ^2 } \right) \hbox {e}^{ - \gamma y} } \right) \hbox {e}^{ - I\xi x} \hbox {d}\xi \end{aligned}$$
(A.1c)
$$\begin{aligned} u_2 (x,y)&= \frac{1}{{2\pi }}\int \limits _{ - \infty }^\infty {\frac{1}{{2\mu _2 }}\xi \left( {IC_1 \hbox {e}^{\xi y} + \frac{1}{\xi }IC_2 \hbox {e}^{\xi y} \left( {2 - 2\nu _2 + \xi y} \right) - \frac{\gamma }{\xi }C_3 \hbox {e}^{\gamma y} - C_4 \hbox {e}^{\xi y} } \right) \hbox {e}^{ - I\xi x} \hbox {d}\xi } \end{aligned}$$
(A.1d)
$$\begin{aligned} v_2 (x,y)&= \frac{1}{{2\pi }}\int \limits _{ - \infty }^\infty {\frac{1}{{2\mu _2 }}\xi \left( { - C_1 \hbox {e}^{\xi y} - \frac{1}{\xi }C_2 \hbox {e}^{\xi y} \left( { - 1 + 2\nu _2 + \xi y} \right) - IC_3 \hbox {e}^{\gamma y} - IC_4 \hbox {e}^{\xi y} } \right) } \,\hbox {e}^{ - I\xi x} \hbox {d}\xi \end{aligned}$$
(A.1e)
$$\begin{aligned} \omega _2 (x,y)&= \frac{1}{{2\pi }}\int \limits _{ - \infty }^\infty {\frac{1}{{2\mu _2 }}\left( {2I\xi ( - 1 + \nu _2 )C_2 \hbox {e}^{\xi y} + \frac{1}{2}C_3 \left( {\gamma ^2 - \xi ^2 } \right) \hbox {e}^{\gamma y} } \right) } \,\hbox {e}^{ - I\xi x} \hbox {d}\xi \end{aligned}$$
(A.1f)

1.2 Expressions of the stresses in terms of \(A_j\), \(B_j\), and \(C_j\) \((j=1, \ldots ,4)\)

$$\begin{aligned} \sigma _{xx1} (x,y)&= \frac{1}{{2\pi }}\int \limits _{ - \infty }^\infty {\xi ^2 \left( {A_1 \hbox {e}^{ - \xi y} + \frac{1}{\xi }A_2 \hbox {e}^{ - \xi y} \left( { - 2 + \xi y} \right) + A_3 \hbox {e}^{\xi y} + \frac{1}{\xi }A_4 \hbox {e}^{\xi y} \left( {2 + \xi y} \right) } \right. } \nonumber \\&\quad \left. - {IB_1 \hbox {e}^{ - \xi y} + IB_2 \hbox {e}^{\xi y} + \frac{1}{\xi }I\gamma B_3 \hbox {e}^{\gamma y} - \frac{1}{\xi }I\gamma B_4 \hbox {e}^{ - \gamma y} } \right) \hbox {e}^{ - I\xi x} \hbox {d}\xi \end{aligned}$$
(A.2a)
$$\begin{aligned} \sigma _{yy1} (x,y)&= \frac{1}{{2\pi }}\int \limits _{ - \infty }^\infty {\xi ^2 \left( { - A_1 \hbox {e}^{ - \xi y} - A_2 y\hbox {e}^{ - \xi y} - A_3 \hbox {e}^{\xi y} - A_4 y\hbox {e}^{ - \xi y} + IB_1 \hbox {e}^{ - \xi y} - IB_2 \hbox {e}^{\xi y} } \right. } \nonumber \\&\quad \left. - {I\frac{\gamma }{\xi }B_3 \hbox {e}^{\gamma y} + I\frac{\gamma }{\xi }B_4 \hbox {e}^{ - \gamma y} } \right) \,\hbox {e}^{ - I\xi x} \hbox {d}\xi \end{aligned}$$
(A.2b)
$$\begin{aligned} \sigma _{xy1} (x,y)&= \frac{1}{{2\pi }}\int \limits _{ - \infty }^\infty {\xi ^2 \left( { - IA_1 \hbox {e}^{ - \xi y} - \frac{1}{\xi }IA_2 \hbox {e}^{ - \xi y} \left( { - 1 + \xi y} \right) + IA_3 \hbox {e}^{\xi y} + \frac{1}{\xi }IA_4 \hbox {e}^{\xi y} \left( {1 + \xi y} \right) } \right. } \nonumber \\&\quad \left. - {B_1 \hbox {e}^{ - \xi y} - B_2 \hbox {e}^{\xi y} - \frac{{\gamma ^2 }}{{\xi ^2 }}B_3 \hbox {e}^{\gamma y} - \frac{{\gamma ^2 }}{{\xi ^2 }}B_4 \hbox {e}^{ - \gamma y} } \right) \hbox {e}^{ - I\xi x} \hbox {d}\xi \end{aligned}$$
(A.2c)
$$\begin{aligned} \sigma _{yx1} (x,y)&= \frac{1}{{2\pi }}\int \limits _{ - \infty }^\infty {\xi ^2 \left( { - IA_1 \hbox {e}^{ - \xi y} - \frac{1}{\xi }IA_2 \hbox {e}^{ - \xi y} \left( { - 1 + \xi y} \right) + IA_3 \hbox {e}^{\xi y} + \frac{1}{\xi }IA_4 \hbox {e}^{\xi y} \left( {1 + \xi y} \right) } \right. } \nonumber \\&\quad \left. - {B_1 \hbox {e}^{ - \xi y} - B_2 \hbox {e}^{\xi y} - B_3 \hbox {e}^{\gamma y} - B_4 \hbox {e}^{ - \gamma y} } \right) \hbox {e}^{ - I\xi x} \hbox {d}\xi \end{aligned}$$
(A.2d)
$$\begin{aligned} \sigma _{xx2} (x,y)&= \frac{1}{{2\pi }}\int \limits _{ - \infty }^\infty {\xi ^2 \left( {C_1 \hbox {e}^{\xi y} + \frac{1}{\xi }C_2 \hbox {e}^{\xi y} \left( {2 + \xi y} \right) + \frac{1}{\xi }I\gamma C_3 \hbox {e}^{\gamma y} + IC_4 \hbox {e}^{\xi y} } \right) } \,\hbox {e}^{ - I\xi x} \hbox {d}\xi \end{aligned}$$
(A.2e)
$$\begin{aligned} \sigma _{yy2} (x,y)&= \frac{1}{{2\pi }}\int \limits _{ - \infty }^\infty {\xi ^2 \left( { - C_1 \hbox {e}^{\xi y} - C_2 y\hbox {e}^{\xi y} - \frac{1}{\xi }I\gamma C_3 \hbox {e}^{\gamma y} - IC_4 \hbox {e}^{\xi y} } \right) } \,\hbox {e}^{ - I\xi x} \hbox {d}\xi \end{aligned}$$
(A.2f)
$$\begin{aligned} \sigma _{xy2} (x,y)&= \frac{1}{{2\pi }}\int \limits _{ - \infty }^\infty {\xi ^2 \left( {IC_1 \hbox {e}^{\xi y} + \frac{1}{\xi }IC_2 \hbox {e}^{\xi y} \left( {1 + \xi y} \right) - \frac{{\gamma ^2 }}{{\xi ^2 }}C_3 \hbox {e}^{\gamma y} - C_4 \hbox {e}^{\xi y} } \right) } \,\hbox {e}^{ - I\xi x} \hbox {d}\xi \end{aligned}$$
(A.2g)
$$\begin{aligned} \sigma _{yx2} (x,y)&= \frac{1}{{2\pi }}\int \limits _{ - \infty }^\infty {\xi ^2 \left( {IC_1 \hbox {e}^{\xi y} + \frac{1}{\xi }IC_2 \hbox {e}^{\xi y} \left( {1 + \xi y} \right) - C_3 \hbox {e}^{\gamma y} - C_4 \hbox {e}^{\xi y} } \right) } \,\hbox {e}^{ - I\xi x} \hbox {d}\xi \end{aligned}$$
(A.2h)

1.3 Expressions of the couple stresses in terms of \(A_j\), \(B_j\), and \(C_j\) \((j=1, \ldots ,4)\)

$$\begin{aligned} m_{yz1} (x,y)&= \frac{1}{{2\pi }}\int \limits _{ - \infty }^\infty {\xi \left( { - B_1 \hbox {e}^{ - \xi y} + B_2 \hbox {e}^{\xi y} + \frac{\gamma }{\xi }B_3 \hbox {e}^{\gamma y} - \frac{\gamma }{\xi }B_4 \hbox {e}^{ - \gamma y} } \right) } \,\hbox {e}^{ - I\xi x} \hbox {d}\xi \end{aligned}$$
(A.3a)
$$\begin{aligned} m_{yz2} (x,y)&= \frac{1}{{2\pi }}\int \limits _{ - \infty }^\infty {\left( {\gamma C_3 \hbox {e}^{\gamma y} + C_4 \xi \hbox {e}^{\xi y} } \right) } \,\hbox {e}^{ - I\xi x} \hbox {d}\xi \end{aligned}$$
(A.3b)
$$\begin{aligned} {m_{xz1}}(x,y)&= \frac{1}{{2\pi }}\int \limits _{ - \infty }^\infty { - I\xi \left( {{B_1}{\hbox {e}^{ - \xi y}} + {B_2}{\hbox {e}^{\xi y}} + {B_3}{\hbox {e}^{\gamma y}} + {B_4}{\hbox {e}^{ - \gamma y}}} \right) } \,{\hbox {e}^{ - I\xi x}}\hbox {d}\xi \end{aligned}$$
(A.3c)
$$\begin{aligned} {m_{xz2}}(x,y)&= \frac{1}{{2\pi }}\int \limits _{ - \infty }^\infty { - I\xi \left( {{C_3}{\hbox {e}^{\gamma y}} + {C_4}{\hbox {e}^{\xi y}}} \right) } \,{\hbox {e}^{ - I\xi x}}\hbox {d}\xi \end{aligned}$$
(A.3d)

Appendix B

1.1 Classical solution of the considered contact problem

For the classical solution, the displacement and stress components in the layer can be written as follows [31]:

$$\begin{aligned} u_1\left( {x,y} \right)&= \frac{1}{{2\pi }}\int \limits _{ - \infty }^\infty {\;\left[ {\left( {D_1 + D_2 y} \right) \,\hbox {e}^{ - \xi y} + \left( {D_3 + D_4 y} \right) \,\hbox {e}^{\xi y} } \right] } \,\,\hbox {e}^{ - i\xi x} \hbox {d}\xi \end{aligned}$$
(B.1a)
$$\begin{aligned} v_1\left( {x,y} \right)&= - \frac{1}{{2\pi }}I\int \limits _{ - \infty }^\infty {\,\left[ {\left[ {D_1 + \left( {\frac{\kappa _1 }{\xi } + y} \right) D_2 } \right] \,\hbox {e}^{ - \xi y} + \left[ { - D_3 + \left( {\frac{\kappa _1 }{\xi } - y} \right) D_4 } \right] \,\hbox {e}^{\xi y} } \right] } \;\hbox {e}^{ - i\xi x} \hbox {d}\xi \end{aligned}$$
(B.1b)
$$\begin{aligned} \frac{{\sigma _{xx1} \left( {x,y} \right) }}{{2\mu _1 }}&= - \frac{1}{{2\pi }}I\int \limits _{ - \infty }^\infty {\xi \left[ {D_1 \hbox {e}^{ - \xi y} + \left( {\frac{{\kappa _1 - 3}}{{2\xi }} + y} \right) D_2 \hbox {e}^{ - \xi y} + D_3 \hbox {e}^{\xi y} + \left( {y - \frac{{\kappa _1 - 1}}{{2\xi }}} \right) D_4 \hbox {e}^{\xi y} } \right] } \hbox {e}^{ - i\xi x} \hbox {d}\xi \end{aligned}$$
(B.1c)
$$\begin{aligned} \frac{{\sigma _{yy1} \left( {x,y} \right) }}{{2\mu _1 }}&= \frac{1}{{2\pi }}I\int \limits _{ - \infty }^\infty {\,\xi \left[ {D_1 \hbox {e}^{ - \xi y} + \left( {\frac{{\kappa _1 + 1}}{{2\xi }} + y} \right) D_2 \hbox {e}^{ - \xi y} + D_3 \hbox {e}^{\xi y} + \left( {y - \frac{{\kappa _1 + 1}}{{2\xi }}} \right) D_4 \hbox {e}^{\xi y} } \right] } \hbox {e}^{ - i\xi x} \hbox {d}\xi \end{aligned}$$
(B.1d)
$$\begin{aligned} \frac{{\sigma _{yx1} \left( {x,y} \right) }}{{2\mu _1 }}&= - \frac{1}{{2\pi }}\int \limits _{ - \infty }^\infty {\xi \,\left[ {D_1 \hbox {e}^{ - \xi y} + \left( {\frac{{\kappa _1 - 1}}{{2\xi }} + y} \right) D_2 \hbox {e}^{ - \xi y} - D_3 \hbox {e}^{\xi y} - \left( {y - \frac{{\kappa _1 - 1}}{{2\xi }}} \right) D_4 \hbox {e}^{\xi y} } \right] } \hbox {e}^{ - i\xi x} \hbox {d}\xi \end{aligned}$$
(B.1e)

For the half-plane, the expressions of the displacements and stresses become [31]

$$\begin{aligned} u_2\left( {x,y} \right)&= \frac{1}{{2\pi }}\int \limits _{ - \infty }^\infty {\;\left[ {\left( {E_1 + E_2 y} \right) \,\hbox {e}^{|\xi | y} } \right] } \,\,\hbox {e}^{ - i\xi x} \hbox {d}\xi \end{aligned}$$
(B.2a)
$$\begin{aligned} v_2\left( {x,y} \right)&= - \frac{1}{{2\pi }}I\int \limits _{ - \infty }^\infty {\,\left[ \frac{|\xi |}{\xi } {\left[ {-E_1 + \left( {\frac{\kappa _2 }{|\xi | } - y} \right) E_2 } \right] \,\hbox {e}^{|\xi | y} } \right] } \;\hbox {e}^{ - i\xi x} \hbox {d}\xi \end{aligned}$$
(B.2b)
$$\begin{aligned} \frac{{\sigma _{xx2} \left( {x,y} \right) }}{{2\mu _2 }}&= - \frac{1}{{2\pi }}I\int \limits _{ - \infty }^\infty {\xi \left[ {E_1 \hbox {e}^{ |\xi | y} + \left( {y-\frac{{\kappa _2 - 3}}{{2|\xi | }} } \right) E_2 \hbox {e}^{|\xi | y} } \right] } \hbox {e}^{ - i\xi x} \hbox {d}\xi \end{aligned}$$
(B.2c)
$$\begin{aligned} \frac{{\sigma _{yy2} \left( {x,y} \right) }}{{2\mu _2 }}&= \frac{1}{{2\pi }}I\int \limits _{ - \infty }^\infty {\,\xi \left[ {E_1 \hbox {e}^{ |\xi | y} + \left( {y-\frac{{\kappa _2 + 1}}{{2|\xi | }} } \right) E_2 \hbox {e}^{|\xi | y} } \right] } \hbox {e}^{ - i\xi x} \hbox {d}\xi \end{aligned}$$
(B.2d)
$$\begin{aligned} \frac{{\sigma _{yx2} \left( {x,y} \right) }}{{2\mu _2 }}&= - \frac{1}{{2\pi }}\int \limits _{ - \infty }^\infty {|\xi | \,\left[ {E_1 \hbox {e}^{ |\xi | y} + \left( {y-\frac{{\kappa _2 - 1}}{{2|\xi | }} } \right) E_2 \hbox {e}^{|\xi | y} } \right] } \hbox {e}^{ - i\xi x} \hbox {d}\xi \end{aligned}$$
(B.2e)

Applying the boundary conditions (17)(a–d) and (20) yields the following singular integral equation:

$$\begin{aligned} \eta \beta _4 \,p\left( x \right) + \frac{1}{\pi }\int \limits _{ - a}^b {p\left( t \right) \hbox {d}t} \left[ {\frac{{\beta _3 }}{{t - x}} + K_3 \left( {x,t} \right) + \eta \,K_4 \left( {x,t} \right) } \right] = \mu _1 \frac{x}{R} \quad \left( { - a< x < b} \right) \end{aligned}$$
(B.3)

where

$$\begin{aligned} {K_3}\left( {x,t} \right)&= \int \limits _0^\infty {\frac{1}{\Delta }\left[ {\left( { - 2\left( {1 + {\kappa _1}m} \right) \left( {1 + \frac{{{\kappa _2}}}{m}} \right) - 2\left( {{\kappa _2} - {\kappa _1}m} \right) \left( {1 - \frac{1}{m}} \right) {\hbox {e}^{ - 4\xi h}}} \right) + 1} \right] \sin \xi \left( {t - x} \right) \hbox {d}\xi } + \nonumber \\&\quad \int \limits _0^\infty {\frac{1}{\Delta }\left[ {\left( {8\xi h\left( {m - 1} \right) \left( {\frac{{{\kappa _2}}}{m} + 1} \right) {\hbox {e}^{ - 2\xi h}}} \right) + 1} \right] \sin \xi \left( {t - x} \right) \hbox {d}\xi } \end{aligned}$$
(B.4a)
$$\begin{aligned} {K_4}\left( {x,t} \right)&= \int \limits _0^\infty {\frac{1}{\Delta }} \left[ {\left( {2\left( {1 + {\kappa _1}m} \right) \left( {1 + \frac{{{\kappa _2}}}{m}} \right) - 2\left( {{\kappa _2} - {\kappa _1}m} \right) \left( {1 - \frac{1}{m}} \right) {\hbox {e}^{ - 4\xi h}}} \right) - 1} \right] \cos \xi \left( {t - x} \right) \hbox {d}\xi + \nonumber \\&\quad \int \limits _0^\infty {\frac{1}{\Delta }} \left[ {\left( { - 4\left( {\left( {{\kappa _1}m + \frac{{{\kappa _2}}}{m}} \right) + 2{\kappa _1}\frac{{1 - {\kappa _2}}}{{{\kappa _1} - 1}} + 4{\xi ^2}{h^2}\left( {\frac{{m - 1}}{{{\kappa _1} - 1}}} \right) \left( {\frac{{{\kappa _2}}}{m} + 1} \right) } \right) {\hbox {e}^{ - 2\xi h}}} \right) - 1} \right] \nonumber \\&\quad \cos \xi \left( {t - x} \right) \hbox {d}\xi \end{aligned}$$
(B.4b)
$$\begin{aligned} \beta _3&= - \frac{{1 + \kappa _1 }}{4}, \quad \beta _4 = \frac{{ - 1 + \kappa _1 }}{4}, \quad \kappa _1 = 3 - 4\nu _1 \end{aligned}$$
(B.4c)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çömez, İ., El-Borgi, S. Frictional contact problem of a coated half plane pressed by a rigid punch with coupled stress elasticity. Arch Appl Mech 93, 3533–3552 (2023). https://doi.org/10.1007/s00419-023-02452-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02452-x

Keywords

Navigation