Skip to main content
Log in

Thermoelastic rotating contact of an FGM coating with temperature-dependent and arbitrary varying properties

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

This paper investigates the frictional thermoelastic contact of a rigid spherical punch and functionally graded material (FGM) coated half-space with arbitrarily varying material properties. These material parameters include the elastic modulus, Poisson’s ratio, heat conduction parameter, and thermal expansion coefficient. The material parameters of the FGM coating and half-space are assumed to be temperature dependent. The spherical punch is rotated in the FGM-coated half-space at a constant angular speed. The generated frictional heat is related to the friction coefficient, contact radius, angular velocity, and contact pressure. A theoretical formula for the thermoelastic rotating contact problem is established and solved using the finite element method. The main objective of this paper is to investigate the effects of temperature dependence, gradient index, friction coefficient, angular velocity, and gradient form on the surface temperature and stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barber J R, Ciavarella M. Contact mechanics. Int J Solids Struct, 2000, 37: 29–43

    Article  MathSciNet  MATH  Google Scholar 

  2. Suresh S. Graded materials for resistance to contact deformation and damage. Science, 2001, 292: 2447–2451

    Article  Google Scholar 

  3. Zhang Y, Kim J W. Graded zirconia glass for resistance to veneer fracture. J Dent Res, 2010, 89: 1057–1062

    Article  Google Scholar 

  4. Jørgensen O, Giannakopoulos A E, Suresh S. Spherical indentation of composite laminates with controlled gradients in elastic anisotropy. Int J Solids Struct, 1998, 35: 5097–5113

    Article  MATH  Google Scholar 

  5. Suresh S, Olsson M, Giannakopoulos A E, et al. Engineering the resistance to sliding-contact damage through controlled gradients in elastic properties at contact surfaces. Acta Mater, 1999, 47: 3915–3926

    Article  Google Scholar 

  6. Pender D C, Padture N P, Giannakopoulos A E, et al. Gradients in elastic modulus for improved contact-damage resistance. Part I: The silicon nitride-oxynitride glass system. Acta Mater, 2001, 49: 3255–3262

    Article  Google Scholar 

  7. Pender D C, Thompson S C, Padture N P, et al. Gradients in elastic modulus for improved contact-damage resistance. Part II: The silicon nitride-silicon carbide system. Acta Mater, 2001, 49: 3263–3268

    Article  Google Scholar 

  8. Kashtalyan M, Menshykova M. Three-dimensional elastic deformation of a functionally graded coating/substrate system. Int J Solids Struct, 2007, 44: 5272–5288

    Article  MATH  Google Scholar 

  9. Chen P J, Chen S H. Partial slip contact between a rigid punch with an arbitrary tip-shape and an elastic graded solid with a finite thickness. Mech Mater, 2013, 59: 24–35

    Article  Google Scholar 

  10. Demirhan N, Kanber B. Finite element analysis of frictional contacts of FGM coated elastic members. Mech Based Des Struct Machines, 2013, 41: 383–398

    Article  Google Scholar 

  11. Jobin K J, Abhilash M N, Murthy H. A simplified analysis of 2D sliding frictional contact between rigid indenters and FGM coated substrates. Tribol Int, 2017, 108: 174–185

    Article  Google Scholar 

  12. Yilmaz K B, Comez I, Yildirim B, et al. Frictional receding contact problem for a graded bilayer system indented by a rigid punch. Int J Mech Sci, 2018, 141: 127–142

    Article  Google Scholar 

  13. Chen X W, Yue Z Q. Contact mechanics of two elastic spheres reinforced by functionally graded materials (FGM) thin coatings. Eng Anal Bound Elem, 2019, 109: 57–69

    Article  MathSciNet  MATH  Google Scholar 

  14. Alinia Y, Asiaee A, Hosseini-nasab M. Stress analysis in rolling contact problem of a finite thickness FGM layer. Meccanica, 2018, 54: 183–203

    Article  MathSciNet  Google Scholar 

  15. Çömez I, El-Borgi S, Yildirim B. Frictional receding contact problem of a functionally graded layer resting on a homogeneous coated half-plane. Arch Appl Mech, 2020, 90: 2113–2131

    Article  Google Scholar 

  16. Guler M A, Erdogan F. Contact mechanics of graded coatings. Int J Solids Struct, 2004, 41: 3865–3889

    Article  MATH  Google Scholar 

  17. Guler M A, Erdogan F. The frictional sliding contact problems of rigid parabolic and cylindrical stamps on graded coatings. Int J Mech Sci, 2007, 49: 161–182

    Article  Google Scholar 

  18. Ke L L, Wang Y S. Two-dimensional sliding frictional contact of functionally graded materials. Eur J Mech-A Solids, 2007, 26: 171–188

    Article  MATH  Google Scholar 

  19. Liu T J, Wang Y S, Zhang C Z. Axisymmetric frictionless contact of functionally graded materials. Arch Appl Mech, 2008, 78: 267–282

    Article  MATH  Google Scholar 

  20. Dag S, Guler M A, Yildirim B, et al. Sliding frictional contact between a rigid punch and a laterally graded elastic medium. Int J Solids Struct, 2009, 46: 4038–4053

    Article  MATH  Google Scholar 

  21. Çömez İ. Contact problem for a functionally graded layer indented by a moving punch. Int J Mech Sci, 2015, 100: 339–344

    Article  Google Scholar 

  22. Chen P J, Chen S H, Peng J. Frictional contact of a rigid punch on an arbitrarily oriented gradient half-plane. Acta Mech, 2015, 226: 4207–4221

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen P J, Chen S H, Peng J. Sliding contact between a cylindrical punch and a graded half-plane with an arbitrary gradient direction. J Appl Mech, 2015, 82: 041008

    Article  Google Scholar 

  24. El-Borgi S, Abdelmoula R, Keer L. A receding contact plane problem between a functionally graded layer and a homogeneous substrate. Int J Solids Struct, 2006, 43: 658–674

    Article  MATH  Google Scholar 

  25. El-Borgi S, Usman S, Güler M A. A frictional receding contact plane problem between a functionally graded layer and a homogeneous substrate. Int J Solids Struct, 2014, 51: 4462–4476

    Article  Google Scholar 

  26. Aizikovich S M, Krenev L I, Trubchik I S. The deformation of a half-space with a gradient elastic coating under arbitrary axisymmetric loading. J Appl Math Mech, 2008, 72: 461–467

    Article  MATH  Google Scholar 

  27. Aizikovich S M, Alexandrov V M, Kalker J J, et al. Analytical solution of the spherical indentation problem for a half-space with gradients with the depth elastic properties. Int J Solids Struct, 2002, 39: 2745–2772

    Article  MathSciNet  MATH  Google Scholar 

  28. Barik S P, Kanoria M, Chaudhuri P K. Steady state thermoelastic contact problem in a functionally graded material. Int J Eng Sci, 2008, 46: 775–789

    Article  MathSciNet  MATH  Google Scholar 

  29. Shahzamanian M M, Sahari B B, Bayat M, et al. Transient and thermal contact analysis for the elastic behavior of functionally graded brake disks due to mechanical and thermal loads. Mater Des, 2010, 31: 4655–4665

    Article  Google Scholar 

  30. Afsar A M, Go J. Finite element analysis of thermoelastic field in a rotating FGM circular disk. Appl Math Model, 2010, 34: 3309–3320

    Article  MATH  Google Scholar 

  31. Liu J, Ke L L, Wang Y S. Two-dimensional thermoelastic contact problem of functionally graded materials involving frictional heating. Int J Solids Struct, 2011, 48: 2536–2548

    Article  Google Scholar 

  32. Krenev L I, Aizikovich S M, Tokovyy Y V, et al. Axisymmetric problem on the indentation of a hot circular punch into an arbitrarily nonhomogeneous half-space. Int J Solids Struct, 2015, 59: 18–28

    Article  Google Scholar 

  33. Kulchytsky-Zhyhailo R, Bajkowski A S. Axisymmetrical problem of thermoelasticity for halfspace with gradient coating. Int J Mech Sci, 2016, 106: 62–71

    Article  Google Scholar 

  34. Zhang H B, Wang W Z, Zhang S G, et al. Semi-analytical solution of three-dimensional steady state thermoelastic contact problem of multilayered material under friction heating. Int J Thermal Sci, 2018, 127: 384–399

    Article  Google Scholar 

  35. Çömez İ. Thermoelastic receding contact problem of a layer resting on a half plane with frictional heat generation. J Thermal Stresses, 2021, 44: 566–581

    Article  Google Scholar 

  36. Choi H J, Paulino G H. Thermoelastic contact mechanics for a flat punch sliding over a graded coating/substrate system with frictional heat generation. J Mech Phys Solids, 2008, 56: 1673–1692

    Article  MathSciNet  MATH  Google Scholar 

  37. Barik S P, Chaudhuri P K. Thermoelastic contact between a functionally graded elastic cylindrical punch and a half-space involving frictional heating. J Eng Math, 2012, 76: 123–138

    Article  MathSciNet  MATH  Google Scholar 

  38. Chen P J, Chen S H, Peng Z L. Thermo-contact mechanics of a rigid cylindrical punch sliding on a finite graded layer. Acta Mech, 2012, 223: 2647–2665

    Article  MathSciNet  MATH  Google Scholar 

  39. Chen P J, Chen S H. Thermo-mechanical contact behavior of a finite graded layer under a sliding punch with heat generation. Int J Solids Struct, 2013, 50: 1108–1119

    Article  Google Scholar 

  40. Liu J, Ke L L, Wang Y S, et al. Thermoelastic frictional contact of functionally graded materials with arbitrarily varying properties. Int J Mech Sci, 2012, 63: 86–98

    Article  Google Scholar 

  41. Balci M N, Dag S, Yildirim B. Subsurface stresses in graded coatings subjected to frictional contact with heat generation. J Thermal Stresses, 2017, 40: 517–534

    Article  Google Scholar 

  42. Nili A, Adibnazari S, Karimzadeh A. Stress field in the thermoelastic rolling contact of graded coatings. Arch Appl Mech, 2018, 88: 1805–1814

    Article  Google Scholar 

  43. Nili A, Adibnazari S, Karimzadeh A. Rolling contact mechanics of graded coatings involving frictional heating. Acta Mech, 2019, 230: 1981–1997

    Article  MathSciNet  MATH  Google Scholar 

  44. Kim Y W. Temperature dependent vibration analysis of functionally graded rectangular plates. J Sound Vib, 2005, 284: 531–549

    Article  Google Scholar 

  45. Liu J, Ke L L, Zhang C Z. Axisymmetric thermoelastic contact of an FGM-coated half-space under a rotating punch. Acta Mech, 2021, 232: 2361–2378

    Article  MathSciNet  MATH  Google Scholar 

  46. Civelek M B. The axisymmetric contact problem for an elastic layer on a frictionless half-space. Dissertation for Doctoral Degree. Bethlehem: Lehigh University, 1972

    Google Scholar 

  47. Malekzadeh P, Ghorbani Shenas A, Ziaee S. Thermal buckling of functionally graded triangular microplates. J Braz Soc Mech Sci Eng, 2018, 40: 418

    Article  Google Scholar 

  48. Gao J X, Cao Y Z, Lu L H, et al. Study on the interaction between nanosecond laser and 6061 aluminum alloy considering temperature dependence. J Alloys Compd, 2022, 892: 162044

    Article  Google Scholar 

  49. Johnson K L. Contact Mechanics. Cambridge: Cambridge University Press, 1985

    Book  MATH  Google Scholar 

  50. Liu T J, Wang Y S. Axisymmetric frictionless contact problem of a functionally graded coating with exponentially varying modulus. Acta Mech, 2008, 199: 151–165

    Article  MATH  Google Scholar 

  51. Shi Z. Mechanical and thermal contact analysis in layered elastic solids. Dissertation for Doctoral Degree. Minnesota: University of Minnesota, 2001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiaoLiang Ke.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11725207 and 12021002).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Shen, F., Liu, J. et al. Thermoelastic rotating contact of an FGM coating with temperature-dependent and arbitrary varying properties. Sci. China Technol. Sci. 66, 1038–1049 (2023). https://doi.org/10.1007/s11431-022-2219-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2219-9

Navigation