Skip to main content
Log in

An effective model for the thermal conductivity of nanoparticle composites/polymers

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this study, an effective model is proposed to predict the effect of nanoparticle agglomeration on the thermal conductivity of three-phase nanocomposites/polymers. In order to better describe this effect, the concept of agglomeration degree is introduced. The effect of particle volume fraction on thermal conductivity of composites is also studied by considering the interphase and agglomeration degree of particles. First, the relationship between agglomeration degree and particle volume fraction is discussed. Then, the effects of particle volume fraction, agglomeration degree and interphase thickness on thermal conductivity of composites are studied. The obtained results show that the agglomeration degree increases with increasing particle volume fraction. The thermal conductivity of composites increases first and then decreases with increasing particle agglomeration degree, and is also affected by the different thermal conductivity of particles and matrix, and the thickness of interphase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zare, Y., Rhee, K.Y., Parkb, S.J.: A modeling methodology to investigate the effect of interfacial adhesion on the yield strength of MMT reinforced nanocomposites. J. Ind. Eng. Chem. 69, 331–337 (2019)

    Article  Google Scholar 

  2. Ginzburg, V.V.: Recent Developments in Theory and Modeling of Polymer-Based Nanocomposites. Springer, Cham (2019)

    Book  Google Scholar 

  3. Kochetov, R., Korobko, A.V., Andritsch, T., Morshuis, P.H.F., Picken, S.J., Smit, J.J.: Modelling of the thermal conductivity in polymer nanocomposites and the impact of the interface between filler and matrix. J. Phys. D Appl. Phys. 44(39), 395401 (2011)

    Article  Google Scholar 

  4. Xie, S.H., Zhu, B.K., Li, J.B., Wei, X.Z., Xu, Z.K.: Preparation and properties of polyimide/aluminum nitride composites. Polym. Test. 23(7), 797–801 (2004)

    Article  Google Scholar 

  5. Agarwal, S., Khan, M.M.K., Gupta, R.: Thermal conductivity of polymer nanocomposites made with carbon nanofibers. Polym. Eng. Sci. 48(12), 2474–2481 (2010)

    Article  Google Scholar 

  6. Hu, J., Huang, Y., Zeng, X., Li, Q., Ren, L., Sun, R., Xu, J.B., Wong, C.P.: Polymer composite with enhanced thermal conductivity and mechanical strength through orientation manipulating of BN. Compos. Sci. Technol. 160, 127137 (2018)

    Article  Google Scholar 

  7. Shen, D., Zhan, Z., Liu, Z., Cao, Y., Zhou, L., Liu, Y., Dai, W., Nishimura, K., Li, C., Lin, C.T., Jiang, N., Yu, J.: Enhanced thermal conductivity of epoxy composites filled with silicon carbide nanowires. Sci. Rep. 7(1), 2606 (2017)

    Article  Google Scholar 

  8. Tessema, A., Zhao, D., Moll, J., Xu, S., Kidane, A.: Effect of filler loading, geometry, dispersion and temperature on thermal conductivity of polymer nanocomposites. Polym. Test. 57, 101–106 (2016)

    Article  Google Scholar 

  9. Bian, L.C., Gao, M.: Nanomechanics model for properties of carbon nanotubes under a thermal environment. Acta Mech. 229(11), 4521–4538 (2018)

    Article  MathSciNet  Google Scholar 

  10. Wang, Y., Shan, J.W., Weng, G.J.: Percolation threshold and electrical conductivity of graphene-based nanocomposites with filler agglomeration and interfacial tunneling. J. Appl. Phys. 118(6), 065101 (2015)

    Article  Google Scholar 

  11. Golbang, A., Famili, M.H.N., Shirvan, M.M.M.: A method for quantitative characterization of agglomeration degree in nanocomposites. Compos. Sci. Technol. 145, 181–186 (2017)

    Article  Google Scholar 

  12. Zeinedini, A., Shokrieh, M.M., Ebrahimi, A.: The effect of agglomeration on the fracture toughness of CNTs-reinforced nanocomposites. Theor. Appl. Fract. Mech. 94, 84–94 (2018)

    Article  Google Scholar 

  13. Dorigato, A., Pegoretti, A., Dzenis, Y.: Filler aggregation as a reinforcement mechanism in polymer; nanocomposites. Mech. Mater. 61(8), 79–90 (2013)

    Article  Google Scholar 

  14. Jahanmard, P., Shojaei, A.: Mechanical properties and structure of solvent processed novolac resin/layered silicate: development of interphase region. RSC Adv. 5, 80875–80883 (2015)

    Article  Google Scholar 

  15. Cheng, Y., Bian, L., Wang, Y.Y., Taheri, F.: Influences of reinforcing particle and interface bonding strength on material properties of Mg/nano-particle composites. Int. J. Solids Struct. 51(18), 3168–3176 (2014)

    Article  Google Scholar 

  16. Zare, Y., Garmabi, H., Rhee, K.Y.: Prediction of complex modulus in phase-separated poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes nanocomposites. Polym. Test. 66, 189–194 (2018)

    Article  Google Scholar 

  17. Kochetov, R., Korobko, A.V., Andritsch, T., Morshuis, P.H.F., Picken, S.J., Smit, J.J.: Three-phase Lewis–Nielsen model for the thermal conductivity of polymer nanocomposites. In: 2011 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, IEEE (2012)

  18. Qiao, R., Brinson, L.C.: Simulation of interphase percolation and gradients in polymer nanocomposites. Compos. Sci. Technol. 69(3–4), 491–499 (2009)

    Article  Google Scholar 

  19. Sevostianov, I., Kachanov, M.: Effect of interphase layers on the overall elastic and conductive properties of matrix composites. Applications to nanosize inclusion. Int. J. Solids Struct. 44(3–4), 1304–1315 (2007)

    Article  Google Scholar 

  20. Nan, C.W., Birringer, R., Clarke, D.R., Gleiter, H.: Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81(10), 6692 (1997)

    Article  Google Scholar 

  21. Minnich, A., Chen, G.: Modified effective medium formulation for the thermal conductivity of nanocomposites. Appl. Phys. Lett. 91(7), 073105 (2007)

    Article  Google Scholar 

  22. Machrafi, H., Lebon, G., Iorio, C.S.: Effect of volume-fraction dependent agglomeration of nanoparticles on the thermal conductivity of nanocomposites: applications to epoxy resins, filled by SiO2, AlN and MgO nanoparticles. Compos. Sci. Technol. 130, 78–87 (2016)

    Article  Google Scholar 

  23. Wemhoff, A.P., Webb, A.J.: Investigation of nanoparticle agglomeration on the effective thermal conductivity of a composite material. Int. J. Heat Mass Transf. 97, 432–438 (2016)

    Article  Google Scholar 

  24. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. A 241(1226), 376–396 (1957)

    MathSciNet  MATH  Google Scholar 

  25. Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21(5), 571–574 (1973)

    Article  Google Scholar 

  26. Van Tung, H., Trang, L.T.N.: Imperfection and tangential edge constraint sensitivities of thermomechanical nonlinear response of pressure-loaded carbon nanotube-reinforced composite cylindrical panels. Acta Mech. 229(5), 1949–1969 (2018)

    Article  MathSciNet  Google Scholar 

  27. Lee, J.K.: Prediction of thermal conductivities of laminated composites using penny-shaped fillers. J. Mech. Sci. Technol. 22(12), 2481–2488 (2008)

    Article  Google Scholar 

  28. Chen, H., Witharana, S., Jin, Y., Kim, C., Ding, Y.: Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology. China Particuol. 7(2), 151–157 (2009)

    Article  Google Scholar 

  29. Prasher, R., Evans, W., Meakin, P., Fish, J., Phelan, P., Kebinski, P.: Effect of aggregation on thermal conduction in colloidal nanofluids. Appl. Phys. Lett. 89(14), 143119 (2006)

    Article  Google Scholar 

  30. Hui, P.M., Zhang, X., Markworth, A.J., Stroud, D.: Thermal conductivity of graded composites: numerical simulations and an effective medium approximation. J. Mater. Sci. 34(22), 5497–5503 (1999)

    Article  Google Scholar 

  31. Deng, X., Huang, Z., Wang, W., Rajesh, N.D.: Investigation of nanoparticle agglomerates properties using Monte Carlo simulations. Adv. Powder Technol. 27, 1971–1979 (2016)

    Article  Google Scholar 

  32. Downing, T.D., Kumar, R., Cross, W.M., Kjerengtroen, L., Kellar, J.J.: Determining the interphase thickness and properties in polymer matrix composites using phase imaging atomic force microscopy and nanoindentation. J. Adhes. Sci. Technol. 14(14), 1801–1812 (2000)

    Article  Google Scholar 

  33. Behrang, A., Grmela, M., Dubois, C., Turenne, S., Lafleur, P.G.: Influence of particle-matrix interface, temperature, and agglomeration on heat conduction in dispersions. J. Appl. Phys. 114(1), 508 (2013)

    Article  Google Scholar 

  34. Finney, E.E., Shields, S.P., Buhro, W.E., Finke, R.G.: Gold nanocluster agglomeration kinetic studies: evidence for parallel bimolecular plus autocatalytic agglomeration pathways as a mechanism-based alternative to an avrami-based analysis. Chem. Mater. 24(10), 1718–1725 (2012)

    Article  Google Scholar 

Download references

Funding

This study was funded by the Science Research Foundation of Hebei Advanced Institutes (ZD2017075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lichun Bian.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Aggregative growth

Appendix: Aggregative growth

This appendix qualitatively explains why Eq. (26) can be set to power-law form. First, a simple kinetic mechanism is considered, which is called “aggregative growth” [34]. Accordingly, the agglomeration kinetics is controlled by the following equation:

$$\begin{aligned}&P+P\rightarrow A, \nonumber \\&P+A\rightarrow 1.5A, \end{aligned}$$
(A1)

where P stands for the nanoparticles and A for the agglomerate. The “nucleation rate,” defined as the rate of the first agglomerate formed from the initial nanoparticles, is given by

$$\begin{aligned} -\frac{1}{2}\frac{\mathrm{d}\left[ p \right] }{\mathrm{d}t}=k_\mathrm{n} \left[ p \right] ^{2} \end{aligned}$$
(A2)

with \(k_\mathrm{n} \) the nucleation rate constant and square brackets indicating the molar concentration. The term \(\frac{\mathrm{d}\left[ P \right] }{\mathrm{d}t}\) in (A2) stands for the consumption of P due to nucleation only. The “agglomerative growth rate” is given by:

$$\begin{aligned} \frac{\mathrm{d}\left[ p \right] }{\mathrm{d}t}=k_\mathrm{g} \left[ P \right] \left[ A\right] , \end{aligned}$$
(A3)

where \(k_\mathrm{g} \) is the rate constant of agglomerate growth. The term \(\frac{\mathrm{d}\left[ P \right] }{\mathrm{d}t}\) in (A3) stands for the consumption of P due to agglomerate growth only. From (A1):

$$\begin{aligned} \left[ P \right] =\left[ P \right] _{0} -2\left[ A \right] . \end{aligned}$$
(A4)

It follows from (A4) that \(\frac{\mathrm{d}\left[ A \right] }{\mathrm{d}t}=-\frac{1}{2}\frac{\mathrm{d}\left[ P \right] }{\mathrm{d}t}\), so that the total rate law for the agglomeration mechanism is given by

$$\begin{aligned} \frac{\mathrm{d}\left[ A \right] }{\mathrm{d}t}=k_\mathrm{n} \left[ P \right] ^{2}+\frac{1}{2}k_\mathrm{g} \left[ P \right] \left[ A \right] . \end{aligned}$$
(A5)

Making use of the initial conditions \(\left. {\left[ A \right] } \right| _{t=0} =\left[ A \right] _{0} =0\), \(\left. {\left[ P \right] } \right| _{t=0} =\left[ P \right] _{0} \) and relation (A4), the solution of Eq. (A5) is given by

$$\begin{aligned} \left[ A \right] =\frac{2k_\mathrm{n} \left[ P \right] _{0} \left( {1-e^{\frac{k_\mathrm{g} \left[ P \right] _{0} t}{2}}} \right) }{4k_\mathrm{n} (1-e^{\frac{k_\mathrm{g} \left[ P \right] _{0} t}{2}})-k_\mathrm{g} }. \end{aligned}$$
(A6)

When \(t\rightarrow \infty _{\mathrm { ,}}\left[ A \right] _{\infty } =\frac{\left[ P \right] _{0} }{2}\). This indicates that the concentration of agglomerates may be up to half of the initial particle concentration. It can also be seen from the formula that the final concentration of aggregates depends on the initial concentration of nanoparticles. This shows that the size of the agglomerate (and the degree of agglomeration) is a function of the initial volume fraction of nanoparticles. According to the law of proportion, the number of nanoparticles in agglomerates can be determined at a given time:

$$\begin{aligned} N_\mathrm{t} =\frac{2\left[ A \right] }{\left[ P \right] _{0} }N_{\infty } \end{aligned}$$
(A7)

with \(N_{\infty }\) the final number of nanoparticles in the agglomerate. However, the limit \(t\rightarrow \infty \) is not realistic and (A7) is not valuable at this value. Therefore, a middle value \(N_{\mathrm{int}}\) is taken here:

$$\begin{aligned} N_\mathrm{t} =\frac{2\left[ A \right] ^{*}}{\left[ P \right] _{0} }N_{\mathrm{int}}, \end{aligned}$$
(A8)

where \(\left[ A \right] ^{*}<\frac{\left[ P \right] _{0} }{2}\). The relation between the agglomerate size D and the number of nanoparticles in the agglomerate zone can be assumed as follows:

$$\begin{aligned} D\propto CN^{b}, \end{aligned}$$
(A9)

where C is a constant composed out of material constants and geometric data, and b is the fractal index. Coupling Eqs. (A8) and (A9) results in

$$\begin{aligned} \frac{D_{\mathrm{int}} }{D_{t} }\propto \frac{N_{\mathrm{int}} }{N_\mathrm{t} }\propto C\left( {\frac{\left[ P \right] _{0} }{2\left[ A \right] ^{*}}}\right) ^{b}, \end{aligned}$$
(A10)

where \(\left[ P \right] _{0} \propto f_\mathrm{p}\). Therefore, Eq. (26) can be set to power-law form.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, L., Liu, C. An effective model for the thermal conductivity of nanoparticle composites/polymers. Acta Mech 231, 1639–1654 (2020). https://doi.org/10.1007/s00707-019-02610-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02610-9

Navigation