Skip to main content

Advertisement

Log in

Nanomechanics model for properties of carbon nanotubes under a thermal environment

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper proposes a modified molecular mechanics model in which the covalent bond is treated as a beam element, and a theoretical prediction of the thermal environment effect on the elastic properties of single-walled carbon nanotubes (SWCNTs) is reported. The influence of the temperature on Young’s modulus of both armchair and zigzag SWCNTs is investigated. The study shows that the moduli decrease with the increase in temperature, but Poisson’s ratio is not dependent on the temperature. The temperature-dependent Young’s modulus increases with the increase in tube diameter. According to the principle of elasticity theory and energy consistent theory, a temperature-dependent continuum shell model of strain energy is also established. It is found that the deviation between the potential energy of carbon nanotubes and the strain energy of a continuum shell is significantly reduced based on the molecular mechanics model proposed in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima, S.: Helical microtubes of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  2. Treacy, M.M.J., Ebbesen, T.W., Gibson, J.M.: Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996)

    Article  Google Scholar 

  3. Yu, M.F., Lourie, O., Dyer, M.J., et al.: Strength and breaking mechanism of multi-walled carbon nanotubes under tensile load. Science 287(5453), 637–640 (2000)

    Article  Google Scholar 

  4. Yu, M.F., Files, B.S., Arepalli, S.: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Energy Harvest. Syst. 84(24), 5552–5555 (2000)

    Google Scholar 

  5. Yakobaon, B.I., Brabec, C.J., Bernholc, J.: Nanomechanics of carbon tubes: instabilities beyond linear response. Phys. Rev. Lett. 76(14), 2511–2514 (1996)

    Article  Google Scholar 

  6. Ogierman, W., Kokot, G.: A study on fiber orientation influence on the mechanical response of a short fiber composite structure. Acta Mech. 227(1), 1–11 (2016)

    Article  MathSciNet  Google Scholar 

  7. Merino-Pérez, J.L., Hodzic, A., Merson, E., Ayvar-Soberanis, S.: On the temperatures developed in CFRP drilling using uncoated WC-Co tools. Part II: nanomechanical study of thermally aged CFRP composites. Compos. Struct. 123, 30–34 (2015)

    Article  Google Scholar 

  8. Pipes, R.B., Hubert, P.: Helical carbon nanotube arrays: mechanical properties. Compos. Sci. Technol. 62, 419–428 (2002)

    Article  Google Scholar 

  9. Peng, C., Jiang, W., Peng, D.: Effects of temperature on mechanical properties of carbon nanotube bundles: molecular dynamics simulation. J. Nanchang Inst. Technol. 01, 40–43 (2012)

    Google Scholar 

  10. Zhu, S.Q., Wang, X.: Effect of environmental temperatures on elastic properties of single-walled carbon nanotube. J. Therm. Stress. 30(12), 1195–1210 (2007)

    Article  Google Scholar 

  11. Bian, L.C., Zhao, H.: Elastic properties of a single-walled carbon nanotube under a thermal environment. Compos. Struct. 121, 337–343 (2015)

    Article  Google Scholar 

  12. Zhang, Y.C., Chen, X., Wang, X.: Effects of temperature on mechanical properties of multi-walled carbon nanotubes. Compos. Sci. Technol. 68(2), 572–581 (2008)

    Article  Google Scholar 

  13. Li, C.T., Chou, T.W.: Modeling of elastic buckling of carbon nanotubes by molecular structural mechanics approach. Mech. Mater. 36, 1047–1055 (2004)

    Article  Google Scholar 

  14. Otero, F., Martínez, X., Oller, S., Salomón, O.: Study and prediction of the mechanical performance of a nanotube-reinforced composite. Compos. Struct. 94(9), 2920–2930 (2012)

    Article  Google Scholar 

  15. Dresselhaus, M.S., Dresselhaus, G., Saito, R.: Physics of carbon nanotubes. Carbon 33(7), 883–891 (1995)

    Article  Google Scholar 

  16. Badger, R.M.: The relation between internuclear distances and bond force constants. J. Chem. Phys. 2, 128–31 (1934)

    Article  Google Scholar 

  17. Badger, R.M.: The relation between internuclear distances and force constants of molecules and its application to polyatomic molecules. J. Chem. Phys. 3, 710–4 (1935)

    Article  Google Scholar 

  18. Raravikar, N.R., Keblinski, P., Rao, A.M.: Temperature dependence of radial breathing mode Raman frequency of single-walled carbon nanotubes. Phys. Rev. B Condens. Matter 66(23), 126–130 (2002)

    Article  Google Scholar 

  19. Natsuki, T., Tantrakarn, K., Endo, M.: Effects of carbon nanotube structures on mechanical properties. Appl. Phys. A 79(1), 117–124 (2004)

    Article  Google Scholar 

  20. Popov, V.N.: Curvature effects on the structural, electronic and optical properties of isolated single-walled carbon nanotubes within a symmetry-adapted non-orthogonal tight-binding model. New J. Phys. 6(1), 17 (2004)

    Article  Google Scholar 

  21. Salvetat, J.P., Bonard, J.M., Bacsa, R., Stöckli, T., Forró, L.: Physical Properties of Carbon Nanotubes, vol. 138, no. 5, pp. 207–238. Imperial College Press, London (2003)

  22. Natsuki, T., Tantrakarn, K., Endo, M.: Prediction of elastic properties for single-walled carbon nanotubes. Carbon 42(1), 39–45 (2004)

    Article  Google Scholar 

  23. Robertson, D.H., Brenner, D.W., Mintmire, J.W.: Energetics of nanoscale graphitic tubules. Phys. Rev. B Condens. Matter 45(21), 12592–12595 (1992)

    Article  Google Scholar 

  24. Cornwell, C.F., Wille, L.T.: Elastic properties of single-walled carbon nanotubes in compression. Solid State Commun. 101(8), 555–558 (1997)

    Article  Google Scholar 

  25. Lu, X., Hu, Z.: Mechanical property evaluation of single-walled carbon nanotubes by finite element modeling. Compos. B Eng. 43(4), 1902–1913 (2012)

    Article  MathSciNet  Google Scholar 

  26. Pan, J., Bian, L., Zhao, H.: A new micromechanics model and effective elastic modulus of nanotube reinforced composites. Comput. Mater. Sci. 113, 21–26 (2016)

    Article  Google Scholar 

  27. Levyakov, S.V.: Thermal elastica of shear-deformable beam fabricated of functionally graded material. Acta Mech. 226(3), 723–733 (2015)

    Article  MathSciNet  Google Scholar 

  28. Buryachenko, V.A.: General integral equations of thermoelasticity in micromechanics of composites with imperfectly bonded interfaces. Int. J. Solids Struct. 50(20–21), 3190–3206 (2013)

    Article  Google Scholar 

  29. Eberhardt, O., Wallmersperger, T.: Energy consistent modified molecular structural mechanics model for the determination of the elastic properties of single wall carbon nanotubes. Carbon 95, 166–180 (2015)

    Article  Google Scholar 

  30. Kundalwal, S.I., Choyal, V.: Transversely isotropic elastic properties of carbon nanotubes containing vacancy defects using MD. Acta Mech. 229(6), 2571–2584 (2018)

    Article  Google Scholar 

  31. Kothari, R., Kundalwal, S.I., Sahu, S.K.: Transversely isotropic thermal properties of carbon nanotubes containing vacancies. Acta Mech. 229(7), 2787–2800 (2018)

    Article  Google Scholar 

  32. Alian, A.R., Meguid, S.A., Kundalwal, S.I.: Unraveling the influence of grain boundaries on the mechanical properties of polycrystalline carbon nanotubes. Carbon 125, 180–188 (2017)

    Article  Google Scholar 

  33. Chang, T., Gao, H.: Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J. Mech. Phys. Solids 51(6), 1059–1074 (2003)

    Article  Google Scholar 

  34. Huang, M., Chen, H., Lu, J., Lu, P., Zhang, P.: A modified molecular structural mechanics method for analysis of carbon nanotubes. Chin. J. Chem. Phys. 19(4), 286–290 (2006)

    Article  Google Scholar 

  35. Rappe, A.K., Casewit, C.J.: Molecular Mechanics Across Chemistry. University Science Books, Sausalito (1997)

    Google Scholar 

  36. Shokrieh, Mahmood M., Rafiee, R.: Prediction of Young’s modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach. Mater. Des. 31(2), 790–795 (2010)

    Article  Google Scholar 

  37. Jindal, V.K., Imtani, A.N.: Bond lengths of armchair single-waled carbon nanotubes and their pressure dependence. Comput. Mater. Sci. 44(1), 156–162 (2009)

    Article  Google Scholar 

  38. Imtani, A.N., Jindal, V.K.: Pressure effects on bond lengths and shape of zigzag single-walled carbon nanotubes. Comput. Mater. Sci. 44(4), 1142–1149 (2009)

    Article  Google Scholar 

  39. Liew, K.M., Yan, J.W., Sun, Y.Z., He, L.H.: Investigation of temperature effect on the mechanical properties of single-walled carbon nanotubes. Compos. Struct. 93(9), 2208–2212 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The present work was supported by the Science Research Foundation of Hebei Advanced Institutes in China (ZD2017075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lichun Bian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, L., Gao, M. Nanomechanics model for properties of carbon nanotubes under a thermal environment. Acta Mech 229, 4521–4538 (2018). https://doi.org/10.1007/s00707-018-2243-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2243-y

Navigation