Skip to main content
Log in

Application limits of Jeffery’s theory for elongated particle torques in turbulence: a DNS assessment

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Non-spherical particles suspended in fluid flows are subject to hydrodynamic torques generated by fluid velocity gradients. For small axisymmetric particles, the most popular formulation of hydrodynamic torques is that given by Jeffery (Proc R Soc Lond A 102:161–179, 1922), which is valid for uniform shear flow in the viscous Stokes regime. In the lack of simple alternative formulations outside the Stokes regime, the Jeffery formulation has been widely applied to inertial particles in turbulent flows, where it is bound to produce inaccurate results. In this paper we quantify the statistical error incurred when the Jeffery formulation is used to study the motion of elongated axisymmetric particles under nonlinear shear flow conditions. Considering the archetypical case of prolate ellipsoidal particles in turbulent channel flow, we show that error for ellipsoids of the same length, l, as the Kolmogorov scale of the flow, \(\eta _K\), is indeed small (order \(1\%\)) but increases exponentially up to \(l \simeq 10 \eta _K\) before becoming almost independent of elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anczurowski, E., Mason, S.G.: Particle motions in sheared suspensions. XXIV. Rotation of rigid spheroids and cylinders. Trans. Soc. Rheol. 12, 209–215 (1968)

    Article  Google Scholar 

  2. Balachandar, S., Eaton, J.K.: Turbulent dispersed multiphase flows. Annu. Rev. Fluid Mech. 42, 11–33 (2010)

    Article  MATH  Google Scholar 

  3. Balachandar, S.: A scaling analysis for point-particle approaches to turbulent multiphase flows. Int. J. Multiph. Flow 35, 801–810 (2009)

    Article  Google Scholar 

  4. Brenner, H.: The Stokes resistance of an arbitrary particle. Chem. Eng. Sci. 18, 1–25 (1963)

    Article  Google Scholar 

  5. Brenner, H.: The Stokes resistance of an arbitrary particle—IV. Arbitrary fields of flow. Chem. Eng. Sci. 19, 703–727 (1964)

    Article  Google Scholar 

  6. Bretherton, F.P.: The motion of rigid particles in a shear flow at low Reynolds number. J. Fluid Mech. 14, 284–304 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  7. Byron, M., Einarsson, J., Gustavsson, K., Voth, G., Mehlig, B., Variano, E.: Shape-dependence of particle rotation in isotropic turbulence. Phys. Fluids 27, 035101 (2015)

    Article  Google Scholar 

  8. Capone, A., Romano, G.P., Soldati, A.: Experimental investigation on interactions among fluid and rod-like particles in a turbulent pipe jet by means of particle image velocimetry. Exp. Fluids 56, 1 (2015)

    Article  Google Scholar 

  9. Challabotla, N.R., Zhao, L., Andersson, H.I.: Orientation and rotation of inertial disk particles in wall turbulence. J. Fluid Mech. 766, R2 (2015)

    Article  MathSciNet  Google Scholar 

  10. Chen, J., Jin, G., Zhang, J.: Large eddy simulation of orientation and rotation of ellipsoidal particles in isotropic turbulent flows. J. Turbul. 17, 308–326 (2016)

    Article  MathSciNet  Google Scholar 

  11. Einarsson, J., Candelier, F., Lundell, F., Angilella, J.R., Mehlig, B.: Rotation of a spheroid in a simple shear at small Reynolds number. Phys. Fluids 27, 063301 (2015)

    Article  Google Scholar 

  12. Elghobashi, S.: On predicting particle-laden turbulent flows. Appl. Sci. Res. 52, 309 (1994)

  13. Gallily, I., Cohen, A.: On the orderly nature of the motion of nonspherical aerosol particles. J. Colloid Interface Sci. 68, 338–356 (1979)

    Article  Google Scholar 

  14. Gustavsson, K., Einarsson, J., Mehlig, B.: Tumbling of small axisymmetric particles in random and turbulent flows. Phys. Rev. Lett. 112, 014501 (2014)

    Article  Google Scholar 

  15. Hakansson, K.M.O., Kvick, M., Lundell, F., Prahl-Wittberg, L., Soderberg, L.D.: Measurement of width and intensity of particle streaks in turbulent flows. Exp. Fluids 54, 1555 (2013)

    Article  MATH  Google Scholar 

  16. Hinch, E.J., Leal, L.G.: Rotation of small non-axisymmetric particles in a simple shear flow. J. Fluid Mech. 92, 591–608 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hoseini, A.A., Lundell, F., Andersson, H.I.: Finite-length effects on dynamical behavior of rod-like particles in wall-bounded turbulent flow. Int. J. Multiph. Flow 76, 13–21 (2015)

    Article  Google Scholar 

  18. Jeffery, G.B.: The motion of ellipsoidal particles immersed in a viscous flow. Proc. R. Soc. A 102, 161–179 (1922)

    Article  MATH  Google Scholar 

  19. Kuerten, J.G.M.: Point-particle DNS and LES of particle-laden turbulent flow-a state-of-the-art review. Flow Turbul. Combust. 97, 689–713 (2016)

    Article  Google Scholar 

  20. Marchioli, C., Fantoni, M., Soldati, A.: Orientation, distribution and deposition of elongated, inertial fibers in turbulent channel flow. Phys. Fluids 49, 033301 (2010)

    Article  MATH  Google Scholar 

  21. Marchioli, C., Soldati, A.: Rotation statistics of fibers in wall shear turbulence. Acta Mech. 224, 2311–2329 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Marchioli, C., Zhao, L., Andersson, H.I.: On the relative rotational motion between rigid fibers and fluid in turbulent channel flow. Phys. Fluids 28, 013301 (2016)

    Article  Google Scholar 

  23. Marchioli, C.: Large-eddy simulation of turbulent dispersed flows: a review of modelling approaches. Acta Mech. 228, 738–768 (2017)

    Article  Google Scholar 

  24. Mortensen, P.H., Andersson, H.I., Gillissen, J.J.J., Boersma, B.J.: Dynamics of prolate ellipsoidal particles in a turbulent channel flow. Phys. Fluids 20, 093302 (2008a)

    Article  MATH  Google Scholar 

  25. Mortensen, P.H., Andersson, H.I., Gillissen, J.J.J., Boersma, B.J.: On the orientation of ellipsoidal particles in a turbulent shear flow. Int. J. Multiph. Flow 34, 678–683 (2008b)

    Article  MATH  Google Scholar 

  26. Ni, R., Ouellette, N.T., Voth, G.A.: Alignment of vorticity and rods with Lagrangian fluid stretching in turbulence. J. Fluid Mech. 743, R3 (2014)

    Article  Google Scholar 

  27. Ni, R., Kramel, S., Ouellette, N.T., Voth, G.A.: Measurements of the coupling between the tumbling of rods and the velocity gradient tensor in turbulence. J. Fluid Mech. 766, 202–225 (2015)

    Article  Google Scholar 

  28. Njobuenwu, D.O., Fairweather, M.: Dynamics of single, non-spherical ellipsoidal particles in a turbulent channel flow. Chem. Eng. Sci. 123, 265–82 (2015)

    Article  Google Scholar 

  29. Parsa, S., Voth, G.A.: Inertial range scaling in rotations of long rods in turbulence. Phys. Rev. Lett. 112, 024501 (2014)

  30. Parsa, S., Guasto, J.S., Kishore, M., Ouellette, N.T., Gollub, J.P., Voth, G.A.: Rotation and alignment of rods in two-dimensional chaotic flow. Phys. Fluids 23, 043302 (2011)

    Article  Google Scholar 

  31. Parsa, S., Calzavarini, E., Toschi, F., Voth, G.A.: Rotation rate of rods in turbulent fluid flow. Phys. Rev. Lett. 109, 134501 (2012)

    Article  Google Scholar 

  32. Picciotto, M., Marchioli, C., Soldati, A.: Characterization of near-wall accumulation regions for inertial particles in turbulent boundary layers. Phys. Fluids 17, 098101 (2005)

    Article  MATH  Google Scholar 

  33. Pumir, A., Wilkinson, M.: Orientation statistics of small particles in turbulence. New J. Phys. 13, 093030 (2011)

    Article  Google Scholar 

  34. Ravnik, J., Hriberšek, M.: High gradient magnetic particle separation in viscous flows by 3D BEM. Comput. Mech. 51, 465–474 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rosen, T., Einarsson, J., Nordmark, A., Aidun, C.K., Lundell, F., Mehlig, B.: Numerical analysis of the angular motion of a neutrally buoyant spheroid in shear flow at small Reynolds numbers. Phys. Rev. E 92, 063 (2015)

    Article  MathSciNet  Google Scholar 

  36. Sabban, L., van Hout, R.: Measurements of pollen grain dispersal in still air and stationary, near homogeneous, isotropic turbulence. J. Aerosol Sci. 42, 867–882 (2011)

    Article  Google Scholar 

  37. Shapiro, M., Goldenberg, M.: Deposition of glass fiber particles from turbulent air flow in a pipe. J. Aerosol Sci. 24, 65–87 (1993)

    Article  Google Scholar 

  38. Shin, M., Koch, D.L.: Rotational and translational dispersion of fibers in isotropic turbulent flows. J. Fluid Mech. 540, 143–173 (2005)

    Article  MATH  Google Scholar 

  39. Subramanian, G., Koch, D.L.: Inertial effects on the orientation of nearly spherical particles in simple shear flow. J. Fluid Mech. 557, 257–296 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Taylor, G.I.: The motion of ellipsoidal particles in a viscous fluid. Proc. R. Soc. A 103, 58–61 (1923)

    Article  MATH  Google Scholar 

  41. Trevelyan, B.J., Mason, S.G.: Particle motions in sheared suspensions. I. Rotations. J. Colloid Sci. 6, 354–367 (1951)

    Article  Google Scholar 

  42. van Hout, R., Sabban, L., Cohen, A.: The use of high-speed PIV and holographic cinematography in the study of fiber suspension flows. Acta Mech. 224, 2263–2280 (2013)

    Article  MATH  Google Scholar 

  43. Voth, G., Soldati, A.: Anisotropic particles in turbulence. Annu. Rev. Fluid Mech. 49, 249–276 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang, H., Ahmadi, G., Fan, F.G., McLaughlin, J.B.: Ellipsoidal particles transport and deposition in turbulent channel flows. Int. J. Multiph. Flow 27, 971–1009 (2001)

    Article  MATH  Google Scholar 

  45. Zhao, L., Andersson, H.I.: Why spheroids orient preferentially in near-wall turbulence. J. Fluid Mech. 807, 221–234 (2016)

    Article  MathSciNet  Google Scholar 

  46. Zhao, L., Marchioli, C., Andersson, H.I.: Slip velocity of rigid fibers in turbulent channel flow. Phys. Fluids 26, 063302 (2014)

    Article  Google Scholar 

  47. Zhao, F., van Wachem, B.: Direct numerical simulation of ellipsoidal particles in turbulent channel flow. Acta Mech. 224, 2331–2358 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhao, F., George, W.K., van Wachem, B.G.M.: Four-way coupled simulations of small particles in turbulent channel flow: the effects of particle shape and Stokes number. Phys. Fluids 27, 083301 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Marchioli.

Additional information

This paper is dedicated to the memory of Franz Ziegler

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravnik, J., Marchioli, C. & Soldati, A. Application limits of Jeffery’s theory for elongated particle torques in turbulence: a DNS assessment. Acta Mech 229, 827–839 (2018). https://doi.org/10.1007/s00707-017-2002-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-2002-5

Navigation