Skip to main content
Log in

Rotation statistics of fibers in wall shear turbulence

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the rotation of rigid fibers is investigated for the reference case of turbulent channel flow. The aim of the study is to examine the effect of local shear and turbulence anisotropy on the rotational dynamics of fibers with different elongation and inertia. To this aim, statistics of the fiber angular velocity, Ω, are extracted from direct numerical simulation of turbulence at shear Reynolds number Re τ = 150 coupled with Lagrangian tracking of prolate ellipsoidal fibers with Stokes number, St, ranging from 3 to 100 and aspect ratio, λ, ranging from 1 to 50. Accordingly, the fiber-to-fluid density ratio ranges from \({S \simeq 7}\) (for St = 1, λ = 50) to \({S \simeq 3, 470}\) (for St = 100, λ = 1). Statistics are compared one to one with those obtained for spherical particles to highlight effects due to elongation. Results for mean and fluctuating angular velocities show that elongation is important for fibers with small inertia (St ≤  5 in the present flow-fiber combination). For fibers with larger inertia, elongation has an impact on fiber rotation only in the streamwise and wall-normal directions, where mean values of Ω are zero. It is also shown that, in the center of the channel, the Lagrangian autocorrelation coefficients of Ω and corresponding rotational turbulent diffusivities match the exponential behavior predicted by the theory of homogeneous dispersion. In this region of the channel, the probability density function of fiber angular velocities is generally close to Gaussian, indicating that particle rotation away from solid walls can be modeled as a diffusion process of the Ornstein–Uhlenbeck type at stationary state. In the strong shear region (comprised within a distance of 50 viscous units from the wall in the present simulations), fiber anisotropy adds to flow anisotropy to induce strong deviations on fiber rotational dynamics with respect to spherical particles. The database produced in this study is available to all interested users at https://www.fp1005.cism.it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lundell F., Soderberg L.D., Alfredsson P.H.: Fluid mechanics of papermaking. J. Fluid Mech. 43, 195–217 (2011)

    Article  Google Scholar 

  2. Jarecki L., Blonski S., Blim A., Zachara A.: Modeling of pneumatic melt spinning processes. J. Appl. Polym. Sci. 125, 4402–4415 (2012)

    Article  Google Scholar 

  3. Yashiro S., Sasaki H., Sakaida Y.: Particle simulation for predicting fiber motion in injection molding of short- fiber-reinforced composites. Compos. Part A Appl. Sci. Manuf. 43, 1754–1764 (2012)

    Article  Google Scholar 

  4. Parsa S., Calzavarini E., Toschi F., Voth G.A.: Rotation rate of rods in turbulent fluid flow. Phys. Rev. Lett. 109, 134501 (2012)

    Article  Google Scholar 

  5. Lin J.Z., Liang X.Y., Zhang S.L.: Numerical simulation of fiber orientation distribution in round turbulent jet of fiber suspension. Chem. Eng. Res. Des. 90, 766–775 (2012)

    Article  Google Scholar 

  6. Shin M., Koch D.L.: Rotational and translational dispersion of fibers in isotropic turbulent flows. J. Fluid Mech. 540, 143–173 (2005)

    Article  MATH  Google Scholar 

  7. Moosaie A., Le Duc A., Manhart M.: A priori analysis of a closure model using the reconstruction of the orientation distribution function in flow of fiber suspensions. Comput. Mech. 48, 451–459 (2011)

    Article  MATH  Google Scholar 

  8. Olson J.A., Kerekes R.J.: The motion of fibers in turbulent flow. J. Fluid Mech. 377, 47–64 (1998)

    Article  MATH  Google Scholar 

  9. Meyer, C.R., Variano, E.: Rotational diffusion of particles in turbulence. arXiv:1301.0150, 2012.

  10. Bezuglyy V., Mehlig B., Wilkinson M., Nakamura K., Arvedson E.: Generalized Ornstein–Uhlenbeck processes. J. Math. Phys. 47, 073301 (2010)

    Article  MathSciNet  Google Scholar 

  11. Reynolds A.M.: Lagrangian stochastic modeling of anomalous diffusion in two-dimensional turbulence. Phys. Fluids 14, 1442–1451 (2002)

    Article  MathSciNet  Google Scholar 

  12. Taylor G.I.: Diffusion by continuous movements. Proc. Lond. Math. Soc. 20, 196 (1921)

    MATH  Google Scholar 

  13. Yeung P.K., Pope S.B.: Lagrangian statistics from direct numerical simulations of isotropic turbulence. J. Fluid Mech. 207, 531 (1989)

    Article  MathSciNet  Google Scholar 

  14. Mordant N., Metz P., Michel O., Pinton J.-F.: Measurement of Lagrangian velocity in fully developed turbulence. Phys. Rev. Lett. 87, 214501 (2001)

    Article  Google Scholar 

  15. Sato Y., Yamamoto K.: Lagrangian measurements of fluid-particle motion in an isotropic turbulent field. J. Fluid Mech. 175, 183 (1987)

    Article  Google Scholar 

  16. Voth G.A., La Porta A., Crawford A.M., Alexander J., Bodenschatz E.: Measurement of particle acceleration in fully developed turbulence. J. Fluid Mech. 469, 121 (2002)

    Article  MATH  Google Scholar 

  17. Snyder W.H., Lumley J.L.: Some measurements of particle velocity autocorrelation functions in a turbulent flow. J. Fluid Mech. 48, 41–47 (1971)

    Article  Google Scholar 

  18. Weiss J.B., Provenzale A., McWilliams J.C.: Lagrangian dynamics in high-dimensional point-vortex systems. Phys. Fluids 10, 1929–1942 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yeung P.K.: Lagrangian investigations of turbulence. Ann. Rev. Fluid Mech. 34, 115–142 (2002)

    Article  MathSciNet  Google Scholar 

  20. Choi J., Yeo K., Lee C.: Lagrangian statistics in turbulent channel flow. Phys. Fluids 16, 779–793 (2004)

    Article  Google Scholar 

  21. Soldati A., Casal M., Andreussi P., Banerjee S.: Lagrangian simulation of turbulent particle dispersion in electrostatic precipitators. AIChE J. 43, 1403–1413 (1997)

    Article  Google Scholar 

  22. Wang Q., Squires K.D., Wu X.: Lagrangian statistics in turbulent channel flow. Atmosph. Environ. 29, 2417–2427 (1995)

    Article  Google Scholar 

  23. Mortensen P.H., Andersson H.I., Gillissen J.J.J., Boersma B.J.: Dynamics of prolate ellipsoidal particles in a turbulent channel flow. Phys. Fluids 20, 093302 (2008)

    Article  Google Scholar 

  24. Jeffery G.B.: The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. 102, 161–179 (1922)

    Article  Google Scholar 

  25. Marchioli C., Fantoni M., Soldati A.: Orientation, distribution and deposition of elongated, inertial fibers in turbulent channel flow. Phys. Fluids 22, 033301 (2010)

    Article  Google Scholar 

  26. Soldati A., Marchioli C.: Physics and modelling of turbulent particle deposition and entrainment: review of a systematic study. Int. J. Multiph. Flow 35, 827–839 (2009)

    Article  Google Scholar 

  27. Zhang H., Ahmadi G., Fan F.G., McLaughlin J.B.: Ellipsoidal particles transport and deposition in turbulent channel flows. Int. J. Multiph. Flow 27, 971–1009 (2001)

    Article  MATH  Google Scholar 

  28. Gallily I., Cohen A.: On the orderly nature of the motion of nonspherical aerosol particles. J. Colloid Interface Sci. 68, 338–356 (1978)

    Article  Google Scholar 

  29. Brenner H.: The Stokes resistance of an arbitrary particle. Chem. Eng. Sci. 18, 1–25 (1963)

    Article  Google Scholar 

  30. Fan F.G., Ahmadi G.: A sublayer model for wall deposition of ellipsoidal particles in turbulent streams. J. Aerosol Sci. 25, 831–840 (1995)

    Google Scholar 

  31. Shapiro M., Goldenberg M.: Deposition of glass fiber particles from turbulent air flow in a pipe. J. Aerosol Sci. 24, 65–87 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Marchioli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchioli, C., Soldati, A. Rotation statistics of fibers in wall shear turbulence. Acta Mech 224, 2311–2329 (2013). https://doi.org/10.1007/s00707-013-0933-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-0933-z

Keywords

Navigation