Skip to main content
Log in

Facile and sensitive electrochemical sensing device based on carbon paste electrode for warfarin determination

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Warfarin is the most prevalent anticoagulant which prevents blood coagulation as an antagonist of vitamin K. However, its high doses can result in several side effects. Accordingly, checking its level in human blood is of great importance in preventing overdose issues. Therefore, in this research, we proposed an easy-to-use and sensitive electrochemical device using a carbon paste electrode for measuring warfarin. Cyclic voltammetry (CV) and field emission scanning electron microscope were employed for monitoring the electrochemical behavior and surface morphology of the applied electrode, respectively. In addition, with the aim of achieving a better outcome, CV was employed to optimize pH and according to the results pH 4.5 was considered as the optimal value. Moreover, the effect of potential scan rate was studied using CV and the reaction possible mechanism was drawn. Furthermore, the selectivity of the constructed sensor was evaluated through investigation of the interfering materials effects and results (RSD values of 0.8–2.1%) demonstrated that the proposed device has considerable selectivity toward warfarin. The fabricated electrochemical device demonstrated desirable sensitivity with a linear response in the warfarin concentration range, the limit of detection and the limit of quantification of 3 × 10–5 to 3 × 10–3 M, 3.15 × 10–7, and 1.05 × 10–6 M, respectively. Given the obtained results, the fabricated device was successfully employed for measuring warfarin in real samples. Based on the RSD value (2.5%), it can be deduced that the fabricated sensor is a promising tool for online monitoring of warfarin in the near future.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Barritt D, Jordan S (1960) Lancet 275:1309

    Article  Google Scholar 

  2. O’Reilly RA, Aggeler PM, Leong LS (1963) J Clin Investig 42:1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Anderson JL, Horne BD, Stevens SM, Grove AS, Barton S, Nicholas ZP, Kahn SF, May HT, Samuelson KM, Muhlestein JB (2007) Circulation 116:2563

    Article  CAS  PubMed  Google Scholar 

  4. Flockhart DA, O’Kane D, Williams MS, Watson MS, Gage B, Gandolfi R, King R, Lyon E, Nussbaum R, Schulman K (2008) Genet Med 10:139

    Article  CAS  PubMed  Google Scholar 

  5. De Orsi D, Gagliardi L, Turchetto L, Tonelli D (1998) J Pharm Biomed Anal 17:891

    Article  PubMed  Google Scholar 

  6. Roderick LM (1931) Am J Physiol-Legacy Content 96:413

    Article  CAS  Google Scholar 

  7. Wittkowsky AK (2003) Warfarin and other coumarin derivatives: pharmacokinetics, pharmacodynamics, and drug interactions. In: Seminars in vascular medicine, vol 3. Thieme Medical Publishers

  8. O’Reilly RA (1969) J Clin Investig 48:193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ragueneau-Majlessi I, Levy R, Meyerhoff C (2001) Epilepsy Res 47:55

    Article  CAS  PubMed  Google Scholar 

  10. Herald J, Goitia J, Duan L, Chen A, Lee M-S (2022) Am J Cardiovasc Drugs 22:437

    Article  CAS  PubMed  Google Scholar 

  11. Salem DN, O’Gara PT, Madias C, Pauker SG (2008) Chest 133:593S

    Article  PubMed  Google Scholar 

  12. Singer DE, Albers GW, Dalen JE, Go AS, Halperin JL, Manning WJ (2004) Chest 126:429S

    Article  CAS  PubMed  Google Scholar 

  13. Taei M, Hasanpour F, Basiri F, Tavakkoli N, Rasouli N (2016) Microchem J 129:166

    Article  CAS  Google Scholar 

  14. Gholivand MB, Mohammadi-Behzad L (2015) Mater Sci Eng C 57:77

    Article  CAS  Google Scholar 

  15. Li Y, Zhang L, Liu J, Zhou S-F, Al-Ghanim KA, Mahboob S, Ye B-C, Zhang X (2016) RSC Adv 6:43724

    Article  CAS  Google Scholar 

  16. Saeedi I, Ahmadi S, Thompson M, Hashemi P, Ramezani Z (2022) Chemosensors 10:44

    Article  CAS  Google Scholar 

  17. Maheshwaran S, Akilarasan M, Chen S-M, Tamilalagan E, Keerthiga E, Alothman AA, Alqahtani KN, Ganesh P-S (2022) Bioelectrochemistry 146:108166

    Article  CAS  PubMed  Google Scholar 

  18. Locatelli I, Kmetec V, Mrhar A, Grabnar I (2005) J Chromatogr B 818:191

    Article  CAS  Google Scholar 

  19. Ring PR, Bostick JM (2000) J Pharm Biomed Anal 22:573

    Article  CAS  PubMed  Google Scholar 

  20. Weng N, Paula RR, Midtlien C, Jiang X (2001) J Pharm Biomed Anal 25:219

    Article  Google Scholar 

  21. Zhang Z-Y, King BM, Wong YN (2001) Anal Biochem 298:40

    Article  CAS  PubMed  Google Scholar 

  22. Coe RA, Rathe JO, Lee JW (2006) J Pharm Biomed Anal 42:573

    Article  CAS  PubMed  Google Scholar 

  23. Hassan SS, Mahmoud WH, Abdel-Samad MS (1998) Microchim Acta 129:251

    Article  CAS  Google Scholar 

  24. Taei M, Abedi F (2016) Chin J Catal 37:436

    Article  CAS  Google Scholar 

  25. Ezoji H, Rahimnejad M (2018) Sens Actuators B Chem 274:370

    Article  CAS  Google Scholar 

  26. Ezoji H, Rahimnejad M, Najafpour-Darzi G (2020) Ecotoxicol Environ Saf 190:110088

    Article  CAS  PubMed  Google Scholar 

  27. Ghica ME, Ferreira GM, Brett C (2015) J Solid State Electrochem 19:2869

    Article  CAS  Google Scholar 

  28. Ariño C, Banks CE, Bobrowski A, Crapnell RD, Economou A, Królicka A, Pérez-Ràfols C, Soulis D, Wang J (2022) Nat Rev Methods Primers 2:62

    Article  Google Scholar 

  29. Beitollahi H, Sheikhshoaie I (2012) Int J Electrochem Sci 7:7684

    Article  CAS  Google Scholar 

  30. Afkhami A, Madrakian T, Shirzadmehr A, Tabatabaee M, Bagheri H (2012) Sens Actuators B Chem 174:237

    Article  CAS  Google Scholar 

  31. Kalcher K, Kauffmann JM, Wang J, Švancara I, Vytřas K, Neuhold C, Yang Z (1995) Electroanalysis 7:5

    Article  CAS  Google Scholar 

  32. Kalcher K (1990) Electroanalysis 2:419

    Article  CAS  Google Scholar 

  33. Bukkitgar SD, Shetti NP (2016) Mater Sci Eng C 65:262

    Article  CAS  Google Scholar 

  34. Laviron E (1979) J Electroanal Chem Interf Electrochem 100:263

    Article  CAS  Google Scholar 

  35. Gholivand MB, Torkashvand M (2015) Mater Sci Eng C 48:235

    Article  CAS  Google Scholar 

  36. Molaakbari E, Mostafavi A, Beitollahi H, Tohidiyan Z (2017) Talanta 171:25

    Article  CAS  PubMed  Google Scholar 

  37. de Jesus Guedes T, Antônio Reis Andrade G, Barbosa Lima A, Amorim Bezerra da Silva R, Torres Pio dos Santos W (2017) Electroanalysis 29:2340

  38. Karimi-Maleh H, Liu Y, Li Z, Darabi R, Orooji Y, Karaman C, Karimi F, Baghayeri M, Rouhi J, Fu L (2023) Chemosphere 332:138815

    Article  CAS  PubMed  Google Scholar 

  39. Zhang Z, Karimi-Maleh H (2023) Chemosphere 324:138302

    Article  CAS  PubMed  Google Scholar 

  40. Zhang Z, Karimi-Maleh H (2023) Adv Compos Hybrid Mater 6:68

    Article  CAS  Google Scholar 

  41. Karimi-Maleh H, Karimi F, Malekmohammadi S, Zakariae N, Esmaeili R, Rostamnia S, Yola ML, Atar N, Movaghgharnezhad S, Rajendran S (2020) J Mol Liq 310:113185

    Article  CAS  Google Scholar 

  42. Karimi-Maleh H, Fakude CT, Mabuba N, Peleyeju GM, Arotiba OA (2019) J Colloid Interface Sci 554:603

    Article  CAS  PubMed  Google Scholar 

  43. Bijad M, Karimi-Maleh H, Farsi M, Shahidi S-A (2018) J Food Meas Charact 12:634

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Biofuel and Renewable Energy Research Center, Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran [grant number BNUT/370393/2023].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Rahimnejad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi, M., Rahimnejad, M. & Ezoji, H. Facile and sensitive electrochemical sensing device based on carbon paste electrode for warfarin determination. Monatsh Chem 155, 29–35 (2024). https://doi.org/10.1007/s00706-023-03134-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-023-03134-8

Keywords

Navigation