Skip to main content

Advertisement

Log in

Evaluating the Electrochemical Detection of Methyldopa in the Presence of Hydrochlorothiazide Using a Modified Carbon Paste Electrode and Voltammetric Analysis

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

High blood pressure or hypertension, is a common condition in which the blood pressure against the walls of the arteries is higher than usual. This extra pressure may damage the arteries, heart, and other organs, resulting in serious health complications, including heart disease, stroke, kidney disease, and other vascular diseases. Therefore, the sensitive and accurate determination of antihypertensive drugs in pharmaceutical samples and biological fluids is very useful and effective for diagnostic and biomedical research. In the current study, the simultaneous voltammetric measurement of methyldopa and hydrochlorothiazide utilizing a carbon paste electrode that has been modified with a Co3O4/g-C3N4 nanocomposite and ionic liquid (Co3O4/g-C3N4/ILCPE). Utilizing the methods of differential pulse voltammetry (DPV), cyclic voltammetry (CV), and chronoamperometry (CHA), the electrochemical function of the Co3O4/g-C3N4/ILCPE sensor was examined. Electrochemical investigations revealed that the methyldopa oxidation current was boosted and moved to negative potentials on the modified electrode’s surface. The prepared sensor exhibited excellent peak current response towards methyldopa with a linear detection range of 1.0–800.0 µM and a low limit of detection (LOD) of 0.25 µM. The Co3O4/g-C3N4/ILCPE sensor sensitivity was approximately 0.0542 µA µM− 1. Furtheremore, the prepared sensor presented good repeatability, stability, and selectivity. This modified electrode worked satisfactorily as a sensor for methyldopa and hydrochlorothiazide detection in pharmaceutical samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Halakoei H, Ghalkhani M, Sobhani-Nasab A, Rahimi-Nasrabadi M (2021) An efficient electrochemical sensor based on CeVO4-CuWO4 nanocomposite for methyldopa. Mater Res Exp 8:085001

    Article  CAS  Google Scholar 

  2. Pérez-Mella B, Álvarez-Lueje A (2021) Development of a carbon nanotube modified ionic liquid electrode for the voltammetric determination of methyldopa levels in urine. Electroanalysis 25:2193–2199

    Article  Google Scholar 

  3. Baytak AK, Duzmen S, Teker T, Aslanoglu M (2016) A novel modified electrode based on terbium oxide and carbon nanotubes for the simultaneous determination of methyldopa and paracetamol. Anal Methods 8:4711–4719

    Article  CAS  Google Scholar 

  4. Garcia LF, Cunha CE, Moreno EK, Thomaz DV, Sanz Lobón G, Luque R, Somerset V, de Souza Gil E (2018) Nanostructured TiO2 carbon paste based sensor for determination of methyldopa. Pharmaceuticals 11:99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ramírez C, Del Valle MA, Isaacs M, Armijo F (2016) Electrochemical oxidation of catecholamines on fluorine-doped SnO2 substrates. Square-wave voltammetric method for methyldopa determination in pharmaceutical dosage forms. Electrochim Acta 199:227–233

    Article  Google Scholar 

  6. Machini WB, David-Parra DN, Teixeira MF (2015) Electrochemical investigation of the voltammetric determination of hydrochlorothiazide using a nickel hydroxide modified nickel electrode. Mater Sci Eng C 57:344–348

    Article  CAS  Google Scholar 

  7. Hudari FF, Souza JC, Zanoni MV (2018) Adsorptive stripping voltammetry for simultaneous determination of hydrochlorothiazide and triamterene in hemodialysis samples using a multi-walled carbon nanotube-modified glassy carbon electrode. Talanta 179:652–657

    Article  CAS  PubMed  Google Scholar 

  8. Santos MC, Tarley CR, Dall’Antonia LH, Sartori ER (2013) Evaluation of boron-doped diamond electrode for simultaneous voltammetric determination of hydrochlorothiazide and losartan in pharmaceutical formulations. Sens Actuators B Chem 188:263–270

    Article  CAS  Google Scholar 

  9. Purushothama HT, Nayaka YA (2017) Electrochemical study of hydrochlorothiazide on electrochemically pre-treated pencil graphite electrode as a sensor. Sens bio-sens Res 16:12–18

    Article  Google Scholar 

  10. González-Vargas C, Serrano N, Ariño C, Salazar R, Esteban M, Díaz-Cruz JM (2017) Voltammetric determination of anti-hypertensive drug hydrochlorothiazide using screen-printed electrodes modified with l-glutamic acid. Chemosensors 5:25

    Article  Google Scholar 

  11. Omran AA (2007) Simultaneous determination of hydrochlorothiazide and methyldopa in tablets using first derivative spectrophotometry and pls. Al-Azhar Bull Sci 18:113–126

    Article  Google Scholar 

  12. Tajik S, Orooji Y, Karimi F, Ghazanfari Z, Beitollahi H, Shokouhimehr M, Jang HW (2021) High performance of screen-printed graphite electrode modified with Ni–Mo-MOF for voltammetric determination of amaranth. J Food Meas Charact 15:4617–4622

    Article  Google Scholar 

  13. Peyman H, Roshanfekr H, Babakhanian A, Jafari H (2021) PVC membrane electrode modified by lawson as synthetic derivative ionophore for determination of cadmium in alloy and wastewater. Chem Methodol 5:446–453

    CAS  Google Scholar 

  14. Roshanfekr H (2023) ‎A simple specific dopamine aptasensor based on partially reduced graphene oxide–Au NPs composite. Prog Chem Biochem Res 6:79–88

    CAS  Google Scholar 

  15. Akin M, Bekmezci M, Bayat R, Coguplugil ZK, Sen F, Karimi F, Karimi-Maleh H (2022) Mobile device integrated graphene oxide quantum dots based electrochemical biosensor design for detection of miR-141 as a pancreatic cancer biomarker. Electrochim Acta 435:141390

    Article  CAS  Google Scholar 

  16. Hosseini Fakhrabad A, Sanavi Khoshnood R, Abedi MR, Ebrahimi M (2021) Fabrication a composite carbon paste electrodes (CPEs) modified with Multi-Wall Carbon Nano-Tubes (MWCNTs/N, N-Bis (salicyliden)-1, 3-propandiamine) for determination of lanthanum (III). Eurasian Chem Commun 3:627–634

    Google Scholar 

  17. Alizadeh M, Asrami PN, Altuner EE, Gulbagca F, Tiri RNE, Aygun A, Kaynak I, Sen F, Cheraghi S (2022) An ultra-sensitive rifampicin electrochemical sensor based on Fe3O4 nanoparticles anchored Multiwalled Carbon nanotube modified glassy carbon electrode. Chemosphere 309:136566

    Article  CAS  PubMed  Google Scholar 

  18. Arikan K, Burhan H, Bayat R, Sen F (2022) Glucose nano biosensor with non-enzymatic excellent sensitivity prepared with nickel–cobalt nanocomposites on f-MWCNT. Chemosphere 291:132720

    Article  CAS  PubMed  Google Scholar 

  19. Tajik S, Aflatoonian MR, Beitollahi H, Sheikhshoaie I, Dourandish Z, Garkani Nejad F, Bamorovat M (2020) Electrocatalytic oxidation and selective voltammetric detection of methyldopa in the presence of hydrochlorothiazide in real samples. Microchem J 158:105182

    Article  CAS  Google Scholar 

  20. Saghiri S, Ebrahimi M, Bozorgmehr MR (2021) Electrochemical amplified sensor with MgO nanoparticle and ionic liquid: a powerful strategy for methyldopa analysis. Chem Methodol 5(3):234–239

    CAS  Google Scholar 

  21. Cheraghi S, Taher MA, Karimi-Maleh H, Karimi F, Shabani-Nooshabadi M, Alizadeh M, Al-Othman A, Erk N, Raman PKY, Karaman C (2022) Novel enzymatic graphene oxide based biosensor for the detection of glutathione in biological body fluids. Chemosphere 287:132187

    Article  CAS  PubMed  Google Scholar 

  22. Hoa DT, Tu NT, Son LV, Son LV, Toan TT, Thong PL, Nhiem DN, Lieu PK, Khieu DQ (2021) Electrochemical determination of diclofenac by using ZIF-67/g-C3N4 modified electrode. Adsorp Sci Technol 2021:1–4

    Article  Google Scholar 

  23. Mohammadi S, Beitollahi H, Mohadesi A (2013) Electrochemical behaviour of a modified carbon nanotube paste electrode and its application for simultaneous determination of epinephrine, uric acid and folic acid. Sens Lett 11:388–394

    Article  CAS  Google Scholar 

  24. Mohanraj J, Durgalakshmi D, Rakkesh RA, Balakumar S, Rajendran S, Karimi-Maleh H (2020) Facile synthesis of paper based graphene electrodes for point of care devices: a double stranded DNA (dsDNA) biosensor. J Colloid Interface Sci 566:463–472

    Article  CAS  PubMed  Google Scholar 

  25. Pyman H (2022) Design and fabrication of modified DNA-Gp Nano-Biocomposite Electrode for Industrial Dye Measurement and Optical confirmation. Prog Chem Biochem Res 5:391–405

    Google Scholar 

  26. Beitollahi H, Raoof JB, Hosseinzadeh R (2011) Electroanalysis and simultaneous determination of 6-thioguanine in the presence of uric acid and folic acid using a modified carbon nanotube paste electrode. Anal Sci 27:991

    Article  CAS  PubMed  Google Scholar 

  27. Bijad M, Hojjati-Najafabadi A, Asari-Bami H, Habibzadeh S, Amini I, Fazeli F (2021) An overview of modified sensors with focus on electrochemical sensing of sulfite in food samples. Eurasian Chem Commun 3:116–138

    CAS  Google Scholar 

  28. Karimi-Maleh H, Fakude CT, Mabuba N, Peleyeju GM, Arotiba OA (2019) The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor. J Colloid Interface Sci 554:603–610

    Article  CAS  PubMed  Google Scholar 

  29. Mehdizadeh Z, Shahidi SA, Ghorbani-HasanSaraei A, Limooei MB, Bijad M (2022) Monitoring of amaranth in drinking samples using voltammetric amplified electroanalytical sensor. Chem Methodol 2022:246–252

    Google Scholar 

  30. Beitollahi H, Mahmoudi-Moghaddam H, Tajik S (2019) Voltammetric determination of bisphenol A in water and juice using a lanthanum (III)-doped cobalt (II, III) nanocube modified carbon screen-printed electrode. Anal Lett 52:1432–1444

    Article  CAS  Google Scholar 

  31. Ait Lahcen A, Ait Errayess S, Amine A (2016) Voltammetric determination of sulfonamides using paste electrodes based on various carbon nanomaterials. Microchim Acta 183:2169–2176

    Article  CAS  Google Scholar 

  32. Gad EM, Hendawy HA, Fouad MA, Khaled E (2022) Carbonaceous nanomaterials integrated carbon paste sensors for adsorptive anodic voltammetric determination of butenafine in the presence of its degradation product. Microchem J 183:107956

    Article  CAS  Google Scholar 

  33. Keyvanfard M, Karimi-Maleh H, Karimi F, Opoku F, Kiarii EM, Govender PP, Taghavi M, Fu L, Aygun A, Sen F (2021) Electro-catalytic amplified sensor for determination of N-acetylcysteine in the presence of theophylline confirmed by experimental coupled theoretical investigation. Sci Rep 11:1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Anojčić J, Guzsvány V, Kónya Z, Mikov M (2019) Rapid, trace-level direct cathodic voltammetric determination of dopamine by oxidized multiwalled carbon nanotube–modified carbon paste electrode in selected samples of pharmaceutical importance. Ionics 25:6093–6106

    Article  Google Scholar 

  35. Beitollahi H, Sheikhshoaie I (2012) Novel nanostructure-based electrochemical sensor for simultaneous determination of dopamine and acetaminophen. Mater Sci Eng C 32:375–380

    Article  CAS  Google Scholar 

  36. Mirzaei M, Gülseren O, Rafienia M, Zare A (2021) Nanocarbon-assisted biosensor for diagnosis of exhaled biomarkers of lung cancer: DFT approach. Eurasian Chem Commun 3:154–161

    CAS  Google Scholar 

  37. Kavade R, Khanapure R, Gawali U, Patil A, Patil S (2022) Degradation of Methyl orange under visible light by ZnO-Polyaniline nanocomposites. J Appl Organomet Chem 2:101–112

    Google Scholar 

  38. Karaman C, Karaman O, Show PL, Orooji Y, Karimi-Maleh H (2021) Utilization of a double-cross-linked amino-functionalized three-dimensional graphene networks as a monolithic adsorbent for methyl orange removal: equilibrium, kinetics, thermodynamics and artificial neural network modeling. Environ Res 207:112156

    Article  PubMed  Google Scholar 

  39. Chandankar SM, Nerkar PP, Mahajan HS (2022) Fundamental features of quantum dots and their diagnostic applications. Asian J Nanosci Mater 5(1):48–62

    CAS  Google Scholar 

  40. Khazaeli P, Alaei M, Khaksarihadad M, Ranjbar M (2020) Preparation of PLA/chitosan nanoscaffolds containing cod liver oil and experimental diabetic wound healing in male rats study. J Nanobiotechnol 18:1–9

    Article  Google Scholar 

  41. Vardini MT, Abbasi N, Kaviani A, Ahmadi M, Karimi E (2022) Graphite electrode potentiometric sensor modified by surface imprinted silica gel to measure valproic acid. Chem Methodol 6(5):398–408

    CAS  Google Scholar 

  42. Dessie Y, Tadesse S (2021) Nanocomposites as efficient anode modifier Catalyst for Microbial Fuel Cell Performance Improvement. J Chem Rev 3:320–344

    CAS  Google Scholar 

  43. Ameen F, Karimi-Maleh H, Darabi R, Akin M, Ayati A, Ayyildiz S, Bekmezci M, Bayat R, Sen F (2023) Synthesis and characterization of activated carbon supported bimetallic pd based nanoparticles and their sensor and antibacterial investigation. Environ Res 221:115287

    Article  CAS  PubMed  Google Scholar 

  44. Reddy S, Swamy BK, Chandra U, Sherigara BS, Jayadevappa H (2010) Synthesis of CdO nanoparticles and their modified carbon paste electrode for determination of dopamine and ascorbic acid by using cyclic voltammetry technique. Int J Electrochem Sci 5:10–17

    Article  CAS  Google Scholar 

  45. Liu C, Zhang J, Yifeng E, Yue J, Chen L, Li D (2014) One-pot synthesis of graphene-chitosan nanocomposite modified carbon paste electrode for selective determination of dopamine. Electron J Biotechnol 17(4):183–188

    Article  Google Scholar 

  46. de Brito AR, de Carvalho Tavares IM, de Carvalho MS, de Oliveira AJ, Salay LC, Santos AS, dos Anjos PN, Oliveira JR, Franco M (2020) Study of the interaction of the lactase enzyme immobilized in a carbon nanotube matrix for the development of the chemically modified carbon paste electrode. Surf Interfaces 20:100592

    Article  Google Scholar 

  47. Buledi JA, Mahar N, Mallah A, Solangi AR, Palabiyik IM, Qambrani N, Karimi F, Vasseghian Y, Karimi-Maleh H (2022) Electrochemical quantification of mancozeb through tungsten oxide/reduced graphene oxide nanocomposite: a potential method for environmental remediation. Food Chem Toxicol 161:112843

    Article  CAS  PubMed  Google Scholar 

  48. Manikandan VS, Durairaj S, Boateng E, Sidhureddy B, Chen A (2021) Electrochemical detection of nitrite based on Co3O4-Au nanocomposites for food quality control. J Electrochem Soc 168:107505

    Article  CAS  Google Scholar 

  49. Wang H, Li R, Li Z (2017) Nanohybrid of Co3O4 and histidine-functionalized graphene quantum dots for electrochemical detection of hydroquinone. Electrochim Acta 255:323–334

    Article  CAS  Google Scholar 

  50. Qiu W, Tanaka H, Gao F, Wang Q, Huang M (2019) Synthesis of porous nanododecahedron Co3O4/C and its application for nonenzymatic electrochemical detection of nitrite. Adv Powder Technol 30:2083–2093

    Article  CAS  Google Scholar 

  51. Haldorai Y, Kim JY, Vilian AE, Heo NS, Huh YS, Han YK (2016) An enzyme-free electrochemical sensor based on reduced graphene oxide/Co3O4 nanospindle composite for sensitive detection of nitrite. Sens Actuators B Chem 227:92–99

    Article  CAS  Google Scholar 

  52. Ganesamurthi J, Keerthi M, Chen SM, Shanmugam R (2020) Electrochemical detection of thiamethoxam in food samples based on Co3O4 Nanoparticle@Graphitic carbon nitride composite. Ecotoxicol Environ Saf 189:110035

    Article  CAS  PubMed  Google Scholar 

  53. Karimi-Maleh H, Liu Y, Li Z, Darabi R, Orooji Y, Karaman C, Karimi F, Baghayeri M, Rouhi J, Fu L (2023) Calf thymus ds-DNA intercalation with pendimethalin herbicide at the surface of ZIF-8/Co/rGO/C3N4/ds-DNA/SPCE; A bio-sensing approach for pendimethalin quantification confirmed by molecular docking study. Chemosphere 332:138815

  54. Zhang J, Zhu Z, Di J, Long Y, Li W, Tu Y (2015) A sensitive sensor for trace Hg2+ determination based on ultrathin g-C3N4 modified glassy carbon electrode. Electrochim Acta 186:192–200

    Article  CAS  Google Scholar 

  55. Balasubramanian P, Balamurugan TS, Chen SM, Chen TW, Ali MA, Al-Hemaid FM, Elshikh MS (2018) An amperometric sensor for low level detection of antidepressant drug carbamazepine based on graphene oxide-g-C3N4 composite film modified electrode. J Electrochem Soc 165:B160

    Article  CAS  Google Scholar 

  56. Li C, Xu J, Wu Y, Zhang Y, Zhang C, Lei W, Hao Q (2018) g-C3N4 nanofibers doped poly (3, 4-ethylenedioxythiophene) modified electrode for simultaneous determination of ascorbic acid and acetaminophen. J Electroanal Chem 824:52–59

    Article  CAS  Google Scholar 

  57. Ngo HT, Hoa LT, Khanh NT, Hoa TT, Toan TT, Mau TX, Phong NH, Thang HS, Khieu DQ (2020) ZIF-67/g-C3N4-modified electrode for simultaneous voltammetric determination of uric acid and acetaminophen with cetyltrimethylammonium bromide as discriminating agent. J Nanomater 2020:1–3

    Google Scholar 

  58. Ghoreishi SM, Saeidinejad F, Behpour M, Masoum S (2015) Application of multivariate optimization to electrochemical determination of methyldopa drug in the presence of diclofenac at a nanostructured electrochemical sensor. Sens Actuators B: Chem 221:576–585

    Article  CAS  Google Scholar 

  59. Asadpour-Zeynali K, Mollarasouli F (2016) A novel and facile synthesis of TGA-capped CdSe@Ag2Se core-shell quantum dots as a new substrate for high sensitive and selective methyldopa sensor. Sens Actuators B: Chem 237:387–399

    Article  CAS  Google Scholar 

  60. Fouladgar M, Ahmadzadeh S (2016) Application of a nanostructured sensor based on NiO nanoparticles modified carbon paste electrode for determination of methyldopa in the presence of folic acid. Appl Surf Sci 379:150–155

    Article  CAS  Google Scholar 

  61. Keyvanfard M, Hatami M, Gupta VK, Agarwal S, Sadeghifar H, Khalilzadeh MA (2017) Liquid phase analysis of methyldopa in the presence of tyrosine using electrocatalytic effect of a catechol derivative at a surface of NiO nanoparticle modified carbon paste electrode. J Mol Liq 230:290–294

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fariba Garkani Nejad.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borji, S., Beitollahi, H. & Nejad, F.G. Evaluating the Electrochemical Detection of Methyldopa in the Presence of Hydrochlorothiazide Using a Modified Carbon Paste Electrode and Voltammetric Analysis. Top Catal 67, 773–784 (2024). https://doi.org/10.1007/s11244-023-01855-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-023-01855-y

Keywords

Navigation