Novel one-pot dry method for large-scale production of nano γ-Al2O3 from gibbsite under dry conditions


An unprecedented facile one-pot dry method using commercial gibbsite in the presence of ammonium bicarbonate is introduced for the large-scale production of nanostructured gamma alumina particles (NGAs). The efficacy of different non-toxic chelating agents was studied through a dry process in an autoclave reactor, set at a low pressure (60 psi) and temperature (85 °C), and calcination at 450–550 °C was obtained γ-Al2O3. The synthesized physical NGAs were characterized using a variety of techniques, such as X-ray diffraction, field-emission scanning electron microscopy energy-dispersive X-ray, N2 adsorption/desorption, fourier transform infrared spectroscopy, and thermogravimetric/differential thermal analyzer. The Brunauer-Emmet-Teller surface area, pore volume, and average pore size were determined as 360 m2 g−1, 0.5 cm3 g−1, and 7 nm, respectively, under optimum conditions. Importantly, it was shown that the dry method is well suited for the synthesis of NGAs in the presence of ammonium bicarbonate. Particles were further tuned by controlling reaction temperature, the concentration of the chelating agents, and calcination time. These results demonstrate that a dry method strategy using inexpensive gibbsite and precursors for synthesis of NGAs, instead of aluminum alkoxides, make these materials ideal candidates for numerous applications, including heterogeneous catalysis and adsorbents.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Masuda H, Fukuda K (1995) Science 268:1466

    CAS  Article  Google Scholar 

  2. 2.

    Trueba M, Trasatti SP (2005) Eur J Inorg Chem 2005:3393

    Article  Google Scholar 

  3. 3.

    Naik B, Prasad VS, Ghosh NN (2012) Powder Technol 232:1

    CAS  Article  Google Scholar 

  4. 4.

    Srivastava V, Weng C, Singh V, Sharma Y (2011) J Chem Eng Data 56:1414

    CAS  Article  Google Scholar 

  5. 5.

    Kakade M, Ramanathan S, Kothiyal G (2013) J Therm Anal Calorim 112:133

    CAS  Article  Google Scholar 

  6. 6.

    Cai W, Yu J, Anand C, Vinu A, Jaroniec M (2011) Chem Mater 23:1147

    CAS  Article  Google Scholar 

  7. 7.

    Yu X, Yu J, Cheng B, Jaroniec M (2009) J Phys Chem C 113:17527

    CAS  Article  Google Scholar 

  8. 8.

    Park J, Lee J, Choi J-H, Hwang DK, Song Y-W (2015) Sci Rep 5

  9. 9.

    Future Markets I (2015) Market report analysis and forecast to 2020, 1st edn. Future Markets, New York

    Google Scholar 

  10. 10.

    Satterfield CN (1980) Heterogeneous catalysis in practice. McGraw-Hill, New York

    Google Scholar 

  11. 11.

    Chotigkrai N, Panpranot J, Praserthdam P (2014) Catal Commun 56:92

    CAS  Article  Google Scholar 

  12. 12.

    Márquez-Alvarez C, Žilková N, Pérez-Pariente J, Čejka J (2008) Catal Rev 50:222

    Article  Google Scholar 

  13. 13.

    Kanazirev VI (2011) Process for producing enhanced alumina. US Patent 8,007,760 B2, Chem Abstr 153:40601

  14. 14.

    Rahmani F, Haghighi M, Estifaee P (2014) Microporous Mesoporous Mater 185:213

    CAS  Article  Google Scholar 

  15. 15.

    Chindaprasirt P, De Silva P, Sagoe-Crentsil K, Hanjitsuwan S (2012) J Mater Sci 47:4876

    CAS  Article  Google Scholar 

  16. 16.

    Kruk M, Jaroniec M (2001) Chem Mater 13:3169

    CAS  Article  Google Scholar 

  17. 17.

    Jaroniec M, Solovyov LA (2006) Langmuir 22:6757

    CAS  Article  Google Scholar 

  18. 18.

    Sing KS (1985) Pure Appl Chem 57:603

    CAS  Article  Google Scholar 

  19. 19.

    Nguyen PT, Do D, Nicholson D (2013) Colloids Surf A: Physicochem Eng Asp 437:56

    CAS  Article  Google Scholar 

  20. 20.

    Trimm D, Stanislaus A (1986) Appl Catal 21:215

    CAS  Article  Google Scholar 

  21. 21.

    Zhang X, Honkanen M, Levänen E, Mäntylä T (2008) J Cryst Growth 310:3674

    CAS  Article  Google Scholar 

  22. 22.

    Sohlberg K, Pennycook SJ, Pantelides ST (1999) J Am Chem Soc 121:7493

    CAS  Article  Google Scholar 

  23. 23.

    Zhou S, Antonietti M, Niederberger M (2007) Small 3:763

    CAS  Article  Google Scholar 

  24. 24.

    Yu J, Bai H, Wang J, Li Z, Jiao C, Liu Q, Zhang M, Liu L (2013) New J Chem 37:366

    CAS  Article  Google Scholar 

  25. 25.

    Kim S-M, Lee Y-J, Jun K-W, Park J-Y, Potdar H (2007) Mater Chem Phys 104:56

    CAS  Article  Google Scholar 

  26. 26.

    Chowdhury MB, Sui R, Lucky RA, Charpentier PA (2009) Langmuir 26:2707

    Article  Google Scholar 

  27. 27.

    Sidrak YL (2001) Ind Eng Chem Res 40:1146

    CAS  Article  Google Scholar 

  28. 28.

    Hind AR, Bhargava SK, Grocott SC (1999) Colloids Surf A: Physicochem Eng Asp 146:359

    CAS  Article  Google Scholar 

  29. 29.

    Rogojan R, Andronescu E, Ghitulica C, Vasile BS (2011) UPB Buletin Stiintific. Series B: Chem Mater Sci 73:67

    CAS  Google Scholar 

  30. 30.

    Li G, Liu Y, Liu C (2013) Microporous Mesoporous Mater 167:137

    CAS  Article  Google Scholar 

  31. 31.

    Tok A, Boey F, Zhao X (2006) J Mater Process Technol 178:270

    CAS  Article  Google Scholar 

  32. 32.

    Norouzbeigi R, Edrissi M (2011) J Am Ceram Soc 94:4052

    CAS  Article  Google Scholar 

Download references


The authors wish to thank the Nanotechnology Research Center of Research Institute of Petroleum Industry (RIPI) for its support.

Author information



Corresponding author

Correspondence to Sajad Kiani.

Ethics declarations

Conflict of interest


Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kiani, S., Samimi, A. & Rashidi, A. Novel one-pot dry method for large-scale production of nano γ-Al2O3 from gibbsite under dry conditions. Monatsh Chem 147, 1153–1159 (2016).

Download citation


  • Nano gamma alumina particles
  • Gibbsite
  • Dry method synthesis
  • Solvent-deficient
  • One-pot
  • Catalyst supports